您好,欢迎访问三七文档
,312213332112322311322113312312332211aaaaaaaaaaaaaaaaaa333231232221131211aaaaaaaaa例如3223332211aaaaa1221332331aaaaa3122322113aaaaa222321232122111213323331333132aaaaaaaaaaaaaaa一、余子式与代数余子式在阶行列式中,把元素所在的第行和第列划去后,留下来的阶行列式叫做元素的余子式,记作nijaij1nija.Mij,记ijjiijMA1叫做元素的代数余子式.ija例如44434241343332312423222114131211aaaaaaaaaaaaaaaaD44424134323114121123aaaaaaaaaM2332231MA.23M,44434241343332312423222114131211aaaaaaaaaaaaaaaaD,44434134333124232112aaaaaaaaaM1221121MA.12M,33323123222113121144aaaaaaaaaM.144444444MMA.个代数余子式对应着一个余子式和一行列式的每个元素分别引理一个阶行列式,如果其中第行所有元素除外都为零,那末这行列式等于与它的代数余子式的乘积,即.ijijAaDniijaija44434241332423222114131211000aaaaaaaaaaaaaD.14442412422211412113333aaaaaaaaaa例如定理3行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即ininiiiiAaAaAaD2211ni,,2,1二、行列式按行(列)展开法则例73351110243152113D03550100131111115312cc34cc0551111115)1(330550261155526)1(315028.4012rr0532004140013202527102135D例增4计算行列式解0532004140013202527102135D660270132106627210.1080124220532414132525320414013202135215213rr122rr例增5书上习题一6(4)证明:444422221111dcbadcbadcba))()()()((dbcbdacaba))((dcbadc;证:444444422222220001adacabaadacabaadacaba左边222222222222222222222222222222()()()()()()bacadabacadabbaccaddabacadabacadaabaacaada=222111()()()()()()bacadabacadabbaccadda=()()()bacada=)()()()()(00122222abbaddabbaccabbbdbcab()()()()()bacadacbdb=)()()()(112222bdabbddbcabbcc()()()()()abacadbcbd=))((dcbadc证毕。例增7,书上习题一8(6)nnaaaD11111111121021naaa其中nnaaaD11111111121,,433221cccccc解:nnnnaaaaaaaaaa10000100010000100010001000011433221展开(由下往上)按最后一列))(1(121nnaaaannnaaaaaaaaa00000000000000000000000000022433221122331100000000000000000nnnaaaaaaaannnaaaaaaaa000000000000000001143322nnnnnnaaaaaaaaaaaa322321121))(1()11)((121niinaaaa例增8书上习题一8(4)nnnnndcdcbabaD00011112解:111111110000D0000nnnnnnababcdacdd按第一行展开000000)1(1111111112cdcdcbababnnnnnnn2222nnnnnnDcbDda都按最后一行展开222)(nnnnnnDcbdaDniiiiinDcbdaD222)(111111112cbdadcbaDniiiiincbdaD12)(由此得递推公式:即而得证用数学归纳法21211xxD12xx,)(12jijixx)式成立.时(当12n例12证明范德蒙德(Vandermonde)行列式1112112222121).(111jinjinnnnnnnxxxxxxxxxxxD)1(,阶范德蒙德行列式成立)对于假设(11n)()()(0)()()(0011111213231222113312211312xxxxxxxxxxxxxxxxxxxxxxxxDnnnnnnnnn就有提出,因子列展开,并把每列的公按第)(11xxi设法把Dn降阶:从第n行开始,后行减去前行的x1倍,有)()())((211312jjininnxxxxxxxxD).(1jjinixx223223211312111)())((nnnnnnxxxxxxxxxxxxn-1阶范德蒙德行列式1111)()1()()1(1111naaanaaanaaaDnnnnnnn例增6:书上习题一8(3)计算下列行列式:提示:利用范德蒙德行列式的结果。111-112-112nnnnnnnnn解:从第行开始,第行经过次相邻对换,换到第行,第行经过次对换换()到第行,经过()=次行交换,得nnnnnnnnnnaaanaaanaaaD)()1()()1(1111)1(1112)1(1显然,此行列式为范德蒙德行列式。112)1(1)]1()1[()1(jinnnnjaiaD1121)1(2)1(112)1()][()1()1()]([)1(jinnnnnjinnnjiji11)(jinji推论行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即.ji,AaAaAajninjiji02211317318214ijijADa1设为行列式=中元素的代数余子式,例3:132333AAA求:的值。11220,.ijijninjaAaAaAij关于代数余子式的重要性质;,0,,1jijiDDAaijnkkjki当当;,0,,1jijiDDAaijnkjkik当当.,0,1jijiij当,当其中解:132333121322233233AAAaAaAaA==030402222D=07005322例增:设行列式,求第四行各元素余子式之和。分析:注意本题是求第四行各元素余子式之和,而不是求第四行各元素代数余子式之和。有两种方法求解:一是分别求出四个余子式,再求和;二是将余子式转化为代数余子式后组成新的行列式,再求解。414243444142434404022256,7003403002220,22242,0000703042221407028MMMMMMMM解:方法一:4142434441424344304022222807001111MMMMAAAA方法二:4142434430402222007001111AAAA错误:1.行列式按行(列)展开法则是把高阶行列式的计算化为低阶行列式计算的重要工具.;,0,,.21jijiDDAaijnkkjki当当;,0,,1jijiDDAaijnkjkik当当.,0,1jijiij当,当其中三、小结思考题阶行列式设nnnDn00103010021321求第一行各元素的代数余子式之和.11211nAAA思考题解答解第一行各元素的代数余子式之和可以表示成nAAA11211n001030100211111.11!2njjn箭形行列式
本文标题:行列式按行列展开
链接地址:https://www.777doc.com/doc-4354226 .html