您好,欢迎访问三七文档
换热器关键术语折流板-在管壳式换热器内等间距排布,支撑管束,防止震动,控制流速和流向,增大湍流程度,减少热点。管箱-安装在管壳式换热器入口侧用于引导多管程换热器管侧流体流动的装置。冷凝器-用于冷却和冷凝热蒸汽的一种管壳式换热器。传导-由分子震动引起的通过固体即无空介质的热传递的方式。对流-在流体中由流体流动引起的热传递方式。逆流-指两股流束沿着相反方向流动,也称为反流。错流-指两股流束沿着彼此垂直的方向流动。压差-进出口之间的压力差;表示为ΔP,或德尔塔p。温差-进出口之间的温度差;表示为ΔT,或德尔塔t。固定管板式换热器-用于指管板与壳体刚性固定的管壳式换热器的术语。浮头-指换热器上介质返回侧管板不与壳体固定,并且设计成当温度升高时可在壳体内伸长(浮动)。污垢-在如冷却塔和换热器等设备内表面形成的,导致热传递效率降低和堵塞。釜式再沸器-带有蒸汽分离腔的管壳式换热器,用于蒸馏系统中,为分离轻重组分提供高温,并维持热平衡。层流-近乎完整的流线型流动,液流层在平行的轨道上流动。多管程换热器-一种管程流体流过管束(热源)超过一次的管壳式换热器平行流-指两股流束沿着相同的方向流动,例如,管壳式换热器中的管侧流和壳侧流;也称为并流辐射热传递-热量在热源和接收者之间通过电磁波传输。再沸器-用于加热曾经沸腾的液体直到液体再次沸腾的换热器。显热-通过温度的改变能够测量或感觉到的热量。管壳式换热器-一种有一个圆筒壳环绕着管束的换热器。壳侧-指管壳式换热器绕管外侧的流道。参见管侧。热虹吸再沸器-当静态的液体被加热到沸点时会产生自然循环的换热器型式。管板-管壳式换热器管端通过滚胀、焊接、或者两者并用的方法连接固定在其上的平板。管侧-指通过管壳式换热器管内的流道,参见壳侧。湍流-流体在漩涡中随机运动或混合。换热器的类型热量传递在工业过程中有非常重要作用。换热器广泛用于过程之间的热量传递,它能够使热流体的热通过热传导或对流的方式传递给冷流体。换热器为此过程提供加热或冷却。各种各样的的换热器被用于化工过程工业中。在盘管式换热器中,蛇管浸没在水里或向其喷水来进行传热,这种操作方式传热系数较低且需要较大空间,因此它最适用于用较低的热负荷来冷凝蒸汽。套管式换热器是采用一个管子包含在另一个管子里面的设计,管子可以是光管或外部翅片管。套管换热器通常采用串联使用,壳侧操作压力高至500磅/平方英寸(表压),而管侧5,000磅/平方英寸(表压)。管壳式换热器有一个圆筒形壳体包在管束外面。流过换热器的流体被称为管侧流体或壳侧流体。换热器内有一系列折流板支撑着管束,用于引导流体流动,增大流速,减少管子震动,保护管子,并产生压力降。管壳式换热器可以分类为单程固定管板式、多程固定管板式、多程浮头式和U型管式。固定管板式换热器(图7.1)的管板与壳体固定。固定管板式换热器适用于最大温差为200°F(93.33°C)的操作。由于热膨胀的存在固定管板式换热器不能超过这个温差值。它最适合用于冷凝或加热操作。浮头式换热器是为200°F(93.33°C)以上的高温差设计的。操作过程中,一块管板固定而另一块管板在壳体内“浮动”,浮动端未与壳体固定且可以自由膨胀。再沸器是用于加热曾经沸腾的液体直到液体再次沸腾的换热器。工业上常用的类型有釜式和热虹吸式。板式换热器主要由若干个金属板片构成,交替排列的金属板片是为冷热交换设计的。两相邻板片的边缘处有垫片,压紧后可达到密封的目的。板式换热器有冷热流体的进口和出口。板片和垫片的四个角孔形成了流体的分配管和汇集管,使冷热流体逆向经过相邻板间的波纹流道空间,该装置最适用于粘性和腐蚀性介质,其传热效率很高。板式换热器结构紧凑且便于清洗,操作温度限制在350到500°F(176.66°C到260°C),其目的是为了保护内部垫片,由于设计要求板式换热器不适合于沸腾和冷凝。工业过程中的大多数液液两相流体的交换都使用该设计。风冷换热器在操作过程中不需要壳体,工艺管连接在一个进水口和一个可回程的汇流箱中,管子上可能存在翅片管或光管,翅片的作用是推动或拉动外界的空气越过暴露的管子,风冷换热器主要应用于高传热的冷凝操作。螺旋板式换热器的特点是结构紧凑,该设计使流体在媒介中形成高湍流。同其他换热器一样,螺旋板式换热器有冷热流体的进口和出口,在内表面实现热的交换,螺旋板式换热器还有两个内部腔。管式换热器的制造商协会通过多种设计的规范标准将换热器进行分类,其中包括美国机械工程师协会(ASME)的结构代码,公差和机械设计:B类,专为通用操作(经济和紧凑设计)C类,专为适度的服务和通用操作(经济和紧凑设计)R类,专为恶劣的条件下(安全耐久性)传热和流体流动传热的方式有热传导,热对流,热辐射(图7.2),在石油化学产品中,炼油厂和实验室的环境中,这些方法需要被充分的理解,在所有的换热器中都能发现热传导和热对流过程的结合。传热的最佳条件是产品受热或冷却有较大的温差(温差越大,传热效果越好),高能量或高的冷却剂流率,较大的换热面积。图7.2传热传导热传导的热量是通过固体传递的,例如管子,封头,挡板,管板,翅片和壳体。这个过程发生在当分子固体矩阵从热源吸收热量,由于分子在一个固体矩阵并且不能移动,它们开始振动,这时能量就从热的一侧转移到冷的一侧。热对流对流是液体中较热部分和较冷部分之间通过循环流动使温度趋于均匀的过程,在液体中分子的运动形成电流,然后再重新分配能量,这个过程将持续进行直到能量分布均匀为止,在一个换热器中,这个过程发生在流体介质彼此接触进行能量交换时。挡板的排列方式和流体的流向将要决定这个对流会发生在换热器的各个部分。热辐射热辐射最好的例子是太阳使地球变得温暖,太阳的热量是通过电磁波传递的。热辐射是一个视线的过程,因此发射源和接收源的位置是非常重要的,在热交换器中没有辐射传热过程。层流和湍流流体流动的两个主要分类是层流和湍流(图7.3)。层式或流线型流动流体在管内流动时,其质点沿着与管轴平行的方向作平滑直线运动。此类流动的流量很小,有很小的扰动(旋转和涡流)。湍流通常有很大的流速。当流速增加时,层流模式将要改变成扰动模式,湍流是随机的运动或流体的混合。一旦湍流流动开始,分子的运动速度就要加快直到流体统一扰动为止。湍流流动允许液体分子混合使其比层流流动更容易吸收热量。层流流动促进了静电膜的发展,静电膜是一个绝缘体。湍流流动减少了静电膜的厚度,提高了传热率。平行流和串流换热器可以通过不同的方式连接,最常见的串联和并联(图7.4),串流中(图7.4),在一个多通道的换热器中通过管侧流动排入到第二个换热器中,根据换热器是如何运行的这种排放路线可以被转向到壳程或管程中。导向原则是经过一个换热器的流动在它到第二个换热器之前。在并联流动中工艺工程是在同一时间经过多个换热器。图7.3层流和湍流图7.4并联和串联流图7.5换热器的串行流换热器的有效性换热器的设计通常要考虑它是如何有效的传递能量,污垢是一个难题,它可能使一个换热器停止传递热量,在持续的运作期间,换热器不能保持清洁。污垢,水锈,和过程中的沉积物的结合使换热器内部的传热受到限制。这些沉积物在壳体壁面存在,抵抗了流体流动,减慢或停止热量的传导。一个换热器的污垢阻力取决于被处理液体的类型,在系统中的数量和悬浮物的类型,对换热器的热分解,和液流的流速和温度。增加流速或降低温度可以使污垢减少,通过检查管程内外的压力,壳程内外压力可以识别污垢。这些数据常被用来计算压差或计算管段阻力损失,进口,出口的压差是不同的,作为管段阻力损失或腐蚀和侵蚀是在热交换中存在的另一个问题,化学制品,热量,流体流动和时间会磨损换热器的内部结构。化学抑制剂被添加来防止腐蚀和结垢。这些抑制剂用来减轻腐蚀,藻类生长和矿物质的沉积。套管换热器套管换热器是一个简单的传热装置设计,套管换热器的管内部还有一根管子(图7.6)。外部管道作为壳程,内管作为管程,冷热流体能在同一个方向流动(并联流动),或相反方向流动(逆流或对流)。流动方向通常是相反的,因为这样传热效率高,此效率是由于扰动,相碰撞的颗粒,相反的气流引起的。即使两个液体流从未彼此直接接触,这两个热能量流(冷和热)没有相互遇到。在每个管道内气流的对流混合散发热量。图7.6套管换热器在一个平行流式换热器中,单相流的出口温度接近另一单相流的出口温度,在一个两相逆流换热器中,一种单相流的出口温度接近于另一单相流的进口温度,因为降低的温差小在平行流式换热器中只能进行少量的能量传递,静电膜对管道内热量交换产生限制,就如隔热屏障。接近管子的液体是热的,远离管子的液体是冷的,任何类型的湍流效应将会打破静态膜和传递能量涡流室周围的一切,平行流不能产生湍流的漩涡。套管换热器的系统局限性是其可以处理流率,最有代表性的是套管换热器的流率是很小的,低流率有利于层流流动。夹套式换热器夹套式换热器通常被使用于化工行业(图7.7),夹套式换热器有两种基本模式:套管和多管设计,夹套式换热器的规定壳程压力是500磅/平方英寸(表压),管程压力是5000磅/平方英寸(表压)。此类换热器得名于其不同寻常的发夹式形状,套管设计是管内部还有一根管子,翅片添加在管子外部可以增加热传递。这个发夹类似于管壳式换热器,拉伸和弯曲成一个发夹。这个发夹设计有几个优点和缺点:它最大的优点是由于U型管的形状使其热膨胀系数很高,它的翅片设计同时有要求流体有一个较低的传热系数,管侧有很高的压力。此外它很容易安装和清洗,其模块化的设计很容易增加节段;或更换部件物美价廉,供应充足。其缺点是并不像管壳式换热器成本效益低并且它需要特殊的垫圈。图7.7夹套式换热器管壳式换热器管壳式换热器是在工业中最常见的一种换热器。管壳式换热器适用于高流量,连续操作的场合,根据流程和需要的传热量管子的排列方式可以发生改变,当管侧流或封头内流体进入到换热器中时两流体彼此平行流动。管程内有一种流体,壳程内有另一种流体流动。热量通过管壁传递给冷流体,热传递的发生首先是热传导,其次是热对流。图7.8显示的是一个单程固定封头式换热器。流体流进和流出的交换器是针对特定于的液体蒸汽。在系统中液体从底部装置流动到顶部以减少或消除受到限制的蒸汽。气体从顶部流动到底部消除被堵塞或积累的液体,此标准既适用于管程流动又适合于壳程流动。板框式换热器板框式换热器是高传热、高压降装置。它由一系列用压缩螺栓固定的两端板间的垫圈(图7.20和7.21)。平板之间的通道是为压降和湍流流动设计的,以为了完成高的传热效率。板式换热器的开口通常位于杆端盖处。当热流体进入热通道时将会通过排出口被送进交替的板之间。然后到上面的板子处。当冷流体进入杆端盖处逆流的冷空气通道时。冷流体往上流动到平板上,热流体通过平板向下流动到。这个薄板将冷热流体进行分离,防止泄露。流体流过板子后进入集管。平板被设计成有一系列交错的格子。热量通过热传导在平板表面进行传热,通过对流进入液体。整个管板流淌冷热流体和像个分隔管冷热流体在板子的两个相对方向上平行流动。热流体在顶部流经换热器的垫圈。这个安排要考虑压降和湍流流动当流体流经板子进入汇集箱时。冷流体的冷流体进入板式换热器的底部垫圈,与热流体形成对流。采集头位于换热器的上部。板框式换热器有以下几个优点和缺点。他们很容易拆卸、清理、分散热量以至于没有热点。板子很容易增加和移动。其他的优点是流体阻力小、污垢小、热效率高。此外,如果垫圈泄露,当泄漏到外面时,很容易更换垫圈。图7.20板框式换热器图7.21板框式装配板子也可以防止产品的交叉污染。板框式换热器可以产生与管壳式是换热器相比比较小的大的湍动,大的压降。板框式换热器的缺点是它对高温和高压的限制。垫圈很容易损坏和处理的液体不能兼容。螺旋式换热器的设计以紧凑同心为特点,能形成高湍流流体(图7.22)。这种换热器有两个基本类型:(1)两侧螺旋流、(2)横向螺旋流。第一种类型的螺旋板换热器适用于液液流体进行换热,冷凝器,气体冷却器装置。流进换热器的流体是专为逆流操作设计的。水平轴安装使悬浮固体能够进行自动清理。图7.22螺旋式换热器第二种类型的螺旋板换热器适
本文标题:6换热器外文翻译
链接地址:https://www.777doc.com/doc-4354607 .html