您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 第十二讲 经济时间序列的季节调整、分解和平滑预测方法
1第十二讲经济时间序列的季节调整、分解与平滑预测方法经济分析与预测合肥工业大学人文经济学院李静博士/副教授2内容框架第一节基础概念第二节季节调整的方法第三节趋势分解方法第四节指数平滑3第一节经济时间序列分解与季节调整基础一分解二季节调整4经济指标的月度或季度时间序列包含4种变动要素:长期趋势要素T、循环要素C、季节变动要素S和不规则要素I。长期趋势要素(T):代表经济时间序列长期的趋势特性。循环要素(C):是以数年为周期的一种周期性变动。季节要素(S):是每年重复出现的循环变动,以12个月或4个季度为周期的周期性影响,由温度、降雨、每年中的假期和政策等因素引起。季节要素和循环要素的区别在于季节变动是固定间距(如季或月)中的自我循环,而循环要素是从一个周期变动到另一个周期,间距比较长且不固定的一种周期性波动。不规则要素(I):又称随机因子、残余变动或噪声,其变动无规则可循,这类因素是由偶然发生的事件引起的,如罢工、意外事故、地震、水灾、恶劣气候、战争、法令更改和预测误差等。一、经济时间序列的分解5511.471631.482751.493871.494991.50198119831985198719891991199319951997单位:亿元606.051505.592405.123304.664204.20198119831985198719891991199319951997单位:亿元0.760.860.961.061.161981198319851987198919911993199519970.890.951.001.061.11198119831985198719891991199319951997图1我国工业总产值的时间序列Y图形图2工业总产值的趋势·循环要素TC图形图3工业总产值的季节变动要素S图形图4工业总产值的不规则要素I图形6二、季节调整的概念季节性变动的发生,不仅是由于气候的直接影响,而且社会制度及风俗习惯也会引起季节变动。经济统计中的月度和季度数据或大或小都含有季节变动因素,以月份或季度作为时间观测单位的经济时间序列通常具有一年一度的周期性变化,这种周期变化是由于季节因素的影响造成的,在经济分析中称为季节性波动。经济时间序列的季节性波动是非常显著的,它往往遮盖或混淆经济发展中其他客观变化规律,以致给经济增长速度和宏观经济形势的分析造成困难和麻烦。因此,在进行经济增长分析时,必须去掉季节波动的影响,将季节要素从原序列中剔除,这就是所谓的“季节调整”(SeasonalAdjustment)。7第二节经济时间序列的季节调整及预测方法1季节调整方法的发展2季节调整的模型选择3X12方法基本算法4季节调整的操作与方法81.季节调整方法的发展1954年美国商务部国势普查局(BureauofCensus,Depart-mentofCommerce)在美国全国经济研究局(NBER)战前研究的移动平均比法(TheRatio-MovingAverageMethod)的基础上,开发了关于季节调整的最初的电子计算机程序,开始大规模地对经济时间序列进行季节调整。此后,季节调整方法不断改进,每次改进都以X再加上序号表示。1960年,发表了X-3方法,X-3方法和以前的程序相比,特异项的代替方法和季节要素的计算方法略有不同。1961年,国势普查局又发表了X-10方法。X-10方法考虑到了根据不规则变动和季节变动的相对大小来选择计算季节要素的移动平均项数。1965年10月发表了X-11方法,这一方法历经几次演变,已成为一种相当精细、典型的季节调整方法9X-11方法是基于移动平均法的季节调整方法。它的特征在于除了能适应各种经济指标的性质,根据各种季节调整的目的,选择计算方式外,在不作选择的情况下,也能根据事先编入的统计基准,按数据的特征自动选择计算方式。在计算过程中可根据数据中的随机因素大小,采用不同长度的移动平均,随机因素越大,移动平均长度越大。X-11方法是通过几次迭代来进行分解的,每一次对组成因子的估算都进一步精化。正因为如此,X-11方法受到很高的评价,已为欧美、日本等国的官方和民间企业、国际机构(IMF)等采用,成为目前普遍使用的季节调整方法。10美国商务部国势普查局的X12季节调整程序是在X11方法的基础上发展而来的,包括X11季节调整方法的全部功能,并对X11方法进行了以下3方面的重要改进:(1)扩展了贸易日和节假日影响的调节功能,增加了季节、趋势循环和不规则要素分解模型的选择功能;(2)新的季节调整结果稳定性诊断功能;(3)增加X12-ARIMA模型的建模和模型选择功能。11X12季节调整方法的核心算法是扩展的X11季节调整程序。共包括4种季节调整的分解形式:乘法、加法、伪加法和对数加法模型。注意采用乘法、伪加法和对数加法模型进行季节调整时,时间序列中不允许有零和负数。①加法模型②乘法模型:③对数加法模型:④伪加法模型:2.季节调整的模型选择ttttISTCYttttISTCYttttISTCYlnlnlnln)1(ttttISTCY12设Yt表示一个无奇异值的月度时间序列,通过预测和回推来扩展序列使得在序列的尾端不需要对季节调整公式进行修改。把Yt分解为趋势循环项TCt、季节项St和不规则要素It。现以加法模型为例,介绍X12季节调整方法的核心算法(为叙述简便而不考虑补欠项的问题)。共分为三个阶段:3.X12季节调整方法的核心算法13①通过中心化12项移动计算平均趋势循环要素的初始估计②计算SI项的初始估计③通过3×3移动平均计算季节因子S的初始估计④消除季节因子中的残余趋势⑤季节调整结果的初始估计第一阶段季节调整的初始估计12/)2121(6556)1(ttttttYYYYYTC)1()1(tttTCYSI9/)232(ˆ)1(24)1(12)1()1(12)1(24)1(ttttttSISISISISIS24/)ˆˆ2ˆ2ˆ(ˆ)1(6)1(5)1(5)1(6)1()1(ttttttSSSSSS)1()1(tttSYTCI14①利用Henderson移动平均公式计算暂定的趋势循环要素②计算暂定的SI项③通过3×5项移动平均计算暂定的季节因子④计算最终的季节因子⑤季节调整的第二次估计结果第二阶段计算暂定的趋势循环要素和最终的季节因子HHjjtHjtTCIhTC)1()12()2()2()2(tttTCYSI15/)23332(ˆ)2(36)2(24)2(12)2()2(12)2(24)2(36)2(ttttttttSISISISISISISIS24/)ˆˆ2ˆ2ˆ(ˆ)2(6)2(5)2(5)2(6)2()2(ttttttSSSSSS)2()2(tttSYTCI15①利用Henderson移动平均公式计算最终的趋势循环要素②计算最终的不规则要素第三阶段计算最终的趋势循环要素和最终的不规则要素)2()12()3(jtHHjHjtTCIhTC)3()2()3(tttTCTCII16主要介绍利用EViews软件对一个月度或季度时间序列进行季节调整的操作方法。在EViews工作环境中,打开一个月度或季度时间序列的工作文件,双击需进行数据处理的序列名,进入这个序列对象,在序列窗口的工具栏中单击Proc按钮将显示菜单:4季节调整的操作及方法17(1)X11方法X-11法是美国商务部标准的季节调整方法(乘法模型、加法模型),乘法模型适用于序列可被分解为季节调整后序列(趋势·循环·不规则要素项)与季节项的乘积,加法模型适用于序列可被分解为季节调整后序列与季节项的和。乘法模型只适用于序列值都为正的情形。18如果在季节调整对话框中选择X-11选项,调整后的序列及因子序列会被自动存入EViews工作文件中,在过程的结尾X-11简要的输出及错误信息也会在序列窗口中显示。关于调整后的序列的名字。EViews在原序列名后加SA,但也可以改变调整后的序列名,这将被存储在工作文件中。需要注意,季节调整的观测值的个数是有限制的。X-11只作用于含季节数据的序列,需要至少4整年的数据,最多能调整20年的月度数据及30年的季度数据。19图社会消费品零售总额的TCI序列(季节调整后序列)20图社会消费品零售总额的原序列(蓝线)和季节调整后序列(TCI序列,红线)21(2)CensusX12方法EViews是将美国国势调查局的X12季节调整程序直接安装到EViews子目录中,建立了一个接口程序。EViews进行季节调整时将执行以下步骤:1.给出一个被调整序列的说明文件和数据文件;2.利用给定的信息执行X12程序;3.返回一个输出文件,将调整后的结果存在EViews工作文件中。X12的EViews接口菜单只是一个简短的描述,EViews还提供了一些菜单不能实现的接口功能,更一般的命令接口程序。22调用X12季节调整过程,在序列窗口选择Procs/SeasonalAdjustment/CensusX12,打开一个对话框:X12方法有5种选择框,下面分别介绍。23A.季节调整选择(SeasonalAjustmentOption)①X11方法(X11Method)这一部分指定季节调整分解的形式:乘法;加法;伪加法(此形式必须伴随ARIMA说明);对数加法。注意乘法、伪加法和对数加法不允许有零和负数。②季节滤波(SeasonalFilter)当估计季节因子时,允许选择季节移动平均滤波(月别移动平均项数),缺省是X12自动确定。近似地可选择(X11default)缺省选择。需要注意如果序列短于20年,X12不允许指定3×15的季节滤波。24④存调整后的分量序列名(ComponentSeriestosave)X12将被调整的序列名作为缺省列在Basename框中,可以改变序列名。在下面的多选钮中选择要保存的季节调整后分量序列,X12将加上相应的后缀存在工作文件中:·最终的季节调整后序列(_SA);·最终的季节因子(_SF);·最终的趋势—循环序列(_TC);·最终的不规则要素分量(_IR);·季节/贸易日因子(_D16);·假日/贸易日因子(_D18);③趋势滤波(TrendFilter(Henderson))当估计趋势—循环分量时,允许指定亨德松移动平均的项数,可以输入大于1和小于等于101的奇数,缺省是由X12自动选择。25利用X12加法模型进行季节调整社会消费品零售总额原序列社会消费品零售总额的TCI序列社会消费品零售总额的TC序列26社会消费品零售总额I序列社会消费品零售总额的S序列27利用X12乘法模型进行季节调整工业总产值原序列工业总产值的TCI序列工业总产值的TC序列28工业总产值的I序列工业总产值的S序列29X12方法是基于移动平均法的季节调整方法。它的一个主要缺点是在进行季节调整时,需要在原序列的两端补欠项,如果补欠项的方法不当,就会造成信息损失。X12-ARIMA方法是由X12方法和时间序列模型组合而成的季节调整方法。通过用ARIMA模型(autoregressiveintegratedmovingAverage)延长原序列,弥补了移动平均法末端项补欠值的问题。建立ARIMA(p,d,q)模型,需要确定模型的参数,包括单整阶数d;自回归模型(AR)的延迟阶数p;动平均模型(MA)的延迟阶数q。也可以在模型中指定一些外生回归因子,建立ARIMAX模型。对于时间序列中的一些确定性的影响(如节假日和贸易日影响),应在季节调整之前去掉。B.ARIMA选择(ARIMAOption)30点击ARIMAOption标签,可出现下列对话框:X12允许在季节调整前对被调整序列建立一个合适的ARIMA模型。31(1)数据转换(DataTransformation)在配备一个合适的ARMA模型之前允许转换序列:(1)缺省是不转换;(2)Auto选择是根据计算出来的A
本文标题:第十二讲 经济时间序列的季节调整、分解和平滑预测方法
链接地址:https://www.777doc.com/doc-4390782 .html