您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2013年中考数学二轮复习专题突破方案设计题
2013年中考数学二轮复习专题方案设计型问题要求以方案设计的形式解决数学问题,问题情境包含实际问题情景和数学问题情境,设计目标有图形设计问题、测量方案问题、经济方案问题等,它一般包括“问题情境——模型建立——说明、应用和拓展”等具体求解过程,三种设计目标所建立的数学模型如下:1.图形设计方案题:在实际生活的背景下,不只是传统的简单作图,而是运用轴对称图形和中心对称图形的性质,借助某些规则的图形(如等腰三角形、菱形、矩形、圆)的性质,通过对图形进行分解与组合进行创新设计.2.测量方案设计题:利用全等三角形、相似三角形、锐角三角函数等设计一个可行的方案,对某一物体的长度、高度、宽度等进行测量计算.3.经济方案设计题:提供或寻求到多种解决问题的方案,并考虑到实施中的经济因素,选择最佳(可行)方案,主要建立方程模型、函数模型、概率模型以解决问题.方案设计题贴近生活,具有较强的操作性和实践性,考查学生的动手实践能力和创新设计才能,解决问题时要慎于思考,并能在实践中对所有可能的方案进行罗列与分析,得出符合要求的一种或几种方案.例1[2011·宜宾]如图1,飞机沿水平方向(A,B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个求距离MN的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN的步骤.图1►类型之一测量方案设计问题解:此题为开放题,答案不唯一,只要方案设计合理即可,答案列举如下:(1)如图,测出飞机在A处对山顶的俯角为α,测出飞机在B处对山顶的俯角为β,测出AB的距离d,连结AM,BM,过M点作MN⊥AN,垂足为N.(2)第一步骤:在Rt△AMN中,tanα=MNAN,∴AN=MNtanα;第二步骤:在Rt△BMN中,tanβ=MNBN,∴BN=MNtanβ,由AN=d+BN,解得MN=d·tanα·tanβtanβ-tanα.这是一道测量方案设计的题目,它是在限定条件的情况下,测量MN之间的距离,对测量方法、测量数据及MN的计算表达式均无限制,因此解题的方法较多.构造适当的直角三角形是解题的关键所在.1.(2012•河南)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).ABBD16xx16tan311tan31160.610.6解答:解:设AB=x米.∵∠AEB=45°,∠ABE=90°,∴BE=AB=x在Rt△ABD中,tan∠D=即tan31°=∴x=≈即AB≈24米在Rt△ABC中,AC==24.2222724BCAB=25.即条幅的长度约为25米.例2.如图是4×4正方形网格,其中已有3个小方涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有4个.►类型之二图形设计方案问题2.(2012•丽水)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.①B.②C.③D.④考点:利用旋转设计图案.分析:通过观察发现,当涂黑②时,所形成的图形关于点A中心对称.解答:解:如图,把标有序号②的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.例3[2012·南充]学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.►类型之三经济方案设计题解:(1)设租用一辆大车的租车费是x元,租用一辆小车的租车费是y元,依题意,答:大、小车每辆的租车费分别是400元和300元.(2)240名师生都有座位,租车总辆数≥6;每辆车上至少要有一名教师,租车总辆数≤6.故租车总数为6辆,设大车辆数是x辆,则租小车(6-x)辆.得:解得4≤x≤5.∵x是正整数,∴x=4或5.于是有两种租车方案,方案1:大车4辆小车2辆总租车费用2200元,方案2:大车5辆小车1辆总租车费用2300元,可见最省钱的是方案1.3.(2012•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A8040B5070(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低?最低成本为多少元?解:(1)设需要搭配x个A种造型,则需要搭配B种造型(60﹣x)个,则有解得37≤x≤40,所以x=37或38或39或40.第一方案:A种造型37个,B种造型23个;第二种方案:A种造型38个,B种造型22个;第三种方案:A种造型39个,B种造型21个.第四种方案:A种造型40个,B种造型20个.(2)分别计算三种方案的成本为:①37×1000+23×1500=71500元,②38×1000+22×1500=71000元,③39×1000+21×1500=70500元,④40×1000+20×1500=70000元.通过比较可知第④种方案成本最低.答:选择第四种方案成本最低,最低位70000元.4:(2012年黑龙江牡丹江)某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?解:(1)设足球的单价为x元,则篮球的单价为(x+20)元,根据题意,得8x+14(x+20)=1600,解得x=60,x+20=80.即足球的单价为60元,篮球的单价为80元.(2)设购进足球y个,则购进篮球(50-y)个.根据题意,得,60y+8050-y≥3200,60y+8050-y≤3240,∵y为整数,∴y=38,39,40.当y=38时,50-y=12;当y=39时,50-y=11;当y=40时,50-y=10.故有三种方案:方案一:购进足球38个,则购进篮球12个;方案二:购进足球39个,则购进篮球11个;方案三:购进足球40个,则购进篮球10个.解得y≤40,y≥38.故第二次购买方案中,方案一商家获利最多.规律方法:解决此类问题,重在读懂题目,理解题意和弄清数量关系.通过阅读将实际问题分析、抽象、转化为相关的代数式,进而列出方程或不等式,最终解答数学问题.(3)商家售方案一的利润:38×(60-50)+12×(80-65)=560(元);商家售方案二的利润:39×(60-50)+11×(80-65)=555(元);商家售方案三的利润:40×(60-50)+10×(80-65)=550(元).例4[2012·青岛]在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图X4-4所示:(1)试判断y与x之间的函数关系,并求出函数关系式;►类型之四利用函数设计销售方案图X4-4(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.解:(1)y是x的一次函数,设所求函数关系式为y=kx+b.由于该函数的图象过点(10,300),(12,240),∴y=-30x+600.当x=14时,y=180;当x=16时,y=120,即点(14,180),(16,120)均在函数y=-30x+600图象上.∴y与x之间的函数关系式为y=-30x+600.(2)w=(x-6)(-30x+600)=-30x2+780x-3600.即w与x之间的函数关系式为w=-30x2+780x-3600.(3)由题意得6(-30x+600)≤900,解得x≥15.w=-30x2+780x-3600图象的对称轴为x=-7802×(-30)=13.∵a=-300,∴抛物线开口向下,当x≥13时,w随x增大而减小.∴当x=15时,w最大=1350.即以15元/个的价格销售这批许愿瓶可获得最大利润1350元.在实际问题或数学问题中建立方程、不等式或函数模型后,利用不等式(组)、函数的最大(小)值可求最大利润、最大面积、最佳方案等问题.5:(2012年山东聊城)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(单位:万件)与销售单价x(单位:元)之间的关系可以近似地看作一次函数y=-2x+100(利润=售价-制造成本).(1)写出每月的利润z(单位:万元)与销售单价x(单位:元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?解:(1)z=(x-18)y=(x-18)(-2x+100)=-2x2+136x-1800,∴z与x之间的函数解析式为z=-2x2+136x-1800.(2)由z=350,得350=-2x2+136x-1800,解这个方程得x1=25,x2=43.所以当销售单价定为25元或43元时,厂商每月能获得350万元的利润.将z=-2x2+136x-1800配方,得z=-2(x-34)2+512,因此,当销售单价为34元时,每月能获得最大利润,最大利润是512万元;(3)结合(2)及函数z=-2x2+136x-1800的图象(如图Z5-1)可知,当25≤x≤43时,z≥350,又由限价32元,得25≤x≤32,根据一次函数的性质,得y=-2x+100中y随x的增大而减小,∴当x=32时,每月制造成本最低.此时,最低成本是18×(-2×32+100)=648(万元).因此,所求每月最低制造成本为648万元.6.(2012•丹东)某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中:(1)该顾客至少可得元购物券,至多可得元购物券;(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.解:(1)根据题意得:该顾客至少可得购物券:0+10=10(元),至多可得购物券:30+50=80(元).故答案为:10,80.(2)列表得:01030500-(0,10)(0,30)(0,50)10(10,0)-(10,30)(1
本文标题:2013年中考数学二轮复习专题突破方案设计题
链接地址:https://www.777doc.com/doc-4408045 .html