您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 新人教A版 选修2-3 离散型随机变量的均值与方差(二)
方差定义方差的两个性质复习引入问题提出本课小结作业:课本79PA组第1,4题离散型随机变量的方差思考三前面,我们认识了数学期望.数学期望:一般地,若离散型随机变量ξ的概率分布列为ξx1x2…xk…xnPp1p2…pk…pn则称E11xp22xp…kkxp…nnxp为ξ的数学期望,简称期望.数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.但有时两个随机变量只用这一个特征量是无法区别他们的。还需要对随机变量取值的稳定与波动、集中与离散的程度进行刻画.离散型随机变量的方差如果其他对手的射击成绩都在8环左右,应派哪一名选手参赛?问题探究:已知甲、乙两名射手在同一条件下射击,所得环数1、2的分布列如下:试比较两名射手的射击水平.18910P0.20.60.228910P0.40.20.4如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛?下面的分析对吗?∵80.290.6100.29E280.490.2100.49E∴甲、乙两射手的射击水平相同.(你赞成吗?为什么?)显然两名选手的水平是不同的,这里要进一步去分析他们的成绩的稳定性.对于一组数据的稳定性的描述,我们是用方差或标准差来刻画的.方差定义一组数据的方差:方差反映了这组数据的波动情况在一组数:x1,x2,…,xn中,各数据的平均数为,则这组数据的方差为:x2222121[()()()]nSxxxxxxn类似于这个概念,我们可以定义随机变量的方差..离散型随机变量取值的方差和标准差:22211()()()iinnDxEpxEpxEp则称为随机变量的方差.21()niiixEp一般地,若离散型随机变量的概率分布列为:P1xix2x······1p2pip······nxnp称D为随机变量的标准差.它们都是反映离散型随机变量偏离于均值的平均程度的量,它们的值越小,则随机变量偏离于均值的平均程度越小,即越集中于均值。记忆方法:“三个的”2()ED即练习一下练习1.(课本第78练习)已知随机变量的分布列01234P0.10.20.40.20.1求D和σ.00.110.220.430.240.12E解:22222(02)0.1(12)0.2(22)0.4(32)0.2(42)0.11.2D1.21.095D2.若随机变量满足P(=c)=1,其中c为常数,求E和D.E=c×1=cD=(c-c)2×1=0练习一下根据期望的定义可推出下面两个重要结论:结论1:则;,ab若EaEb结论2:若ξ~B(n,p),则Eξ=np.那么,根据方差的定义你能推出类似的什么结论:(1)则;,ab若?D(2)若ξ~B(n,p),则Dξ=?.可以证明,对于方差有下面两个重要性质:2()DabaD⑴~(,)(1)BnpDnpqqp若,其中⑵则1.已知随机变量的分布列为则E与D的值为()(A)0.6和0.7(B)1.7和0.3(C)0.3和0.7(D)1.7和0.212.已知~B(100,0.5),则E=___,D=____,___.E(2-1)=____,D(2-1)=____,(2-1)=_____练习:12P0.30.7D5025599100103、有一批数量很大的商品,其中次品占1%,现从中任意地连续取出200件商品,设其次品数为X,求EX和DX。2,1.98刚才问题再思考:再看一例例2如果其他对手的射击成绩都在8环左右,应派哪一名选手参赛?已知甲、乙两名射手在同一条件下射击,所得环数1、2的分布列如下:试比较两名射手的射击水平.18910P0.20.60.228910P0.40.20.4如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛?解:∵80.290.6100.29E280.490.2100.49E∴甲、乙两射手的射击平均水平相同.又∵D0.4,2D0.8,∴甲射击水平更稳定.如果对手在8环左右,派甲.如果对手在9环左右,派乙.课堂练习1解:例题:甲乙两人每天产量相同,它们的次品个数分别为,其分布列为0123P0.30.30.20.2012P0.10.50.4判断甲乙两人生产水平的高低?E=0×0.3+1×0.3+2×0.2+3×0.2=1.3E=0×0.1+1×0.5+2×0.4=1.3D=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21结论:甲乙两人次品个数的平均值相等,但甲的稳定性不如乙,乙的生产水平高。期望值高,平均值大,水平高方差值小,稳定性高,水平高例2:有甲乙两个单位都愿意聘用你,而你能获得如下信息:甲单位不同职位月工资X1/元1200140016001800获得相应职位的概率P10.40.30.20.1乙单位不同职位月工资X2/元1000140018002200获得相应职位的概率P20.40.30.20.1根据工资待遇的差异情况,你愿意选择哪家单位?解:1400,140021EXEX112000,4000021DXDX在两个单位工资的数学期望相等的情况下,如果认为自己能力很强,应选择工资方差大的单位,即乙单位;如果认为自己能力不强,就应选择工资方差小的单位,即甲单位.选做作业:思维挑战:3.若随机变量服从二项分布,且E=6,D=4,则此二项分布是。设二项分布为~B(n,p),则E=np=6D=np(1-p)=4n=18p=1/3作业:课本79PA组第1,4题
本文标题:新人教A版 选修2-3 离散型随机变量的均值与方差(二)
链接地址:https://www.777doc.com/doc-4408544 .html