您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > AI人工智能 > 国科大中科院-人工智能与机器学习-12-DL
深度学习:快速推进中的机器学习与人工智能前沿山世光中科院计算所InstituteofComputingTechnology,ChineseAcademyofSciences提纲深度学习(DL)及其应用前沿DL在CV领域应用的启示关键算法介绍Perceptron及学习算法MLP及其BP算法Auto-EncoderCNN及其主要变种关于DL的思考与讨论2InstituteofComputingTechnology,ChineseAcademyofSciences机器学习的基本任务3)(xFxyClasslabel(Classification)Vector(Estimation){dog,cat,horse,,…}ObjectrecognitionSuperresolutionLow-resolutionimageHigh-resolutionimageInstituteofComputingTechnology,ChineseAcademyofSciences源起——生物神经系统的启示神经元之间通过突触(synapse)连接层级感受野,学习使突触连接增强或变弱甚至消失4Hubel,D.H.&Wiesel,T.N.(1962)InstituteofComputingTechnology,ChineseAcademyofSciences第一代神经网络感知机(Perceptrons)模型[Rosenblatt,1957]二类分类,单个神经元的功能(输入输出关系)f为激活函数,其中:=−=5FrankRosenblatt(1957),ThePerceptron--aperceivingandrecognizingautomaton.Report85-460-1,CornellAeronauticalLaboratory.InstituteofComputingTechnology,ChineseAcademyofSciences第一代神经网络单层感知机(Perceptrons)模型的局限性Minsky&Papert的专著Perceptron(1969)只能对线性可分的模式进行分类解决不了异或问题几乎宣判了这类模型的死刑,导致了随后多年NN研究的低潮6InstituteofComputingTechnology,ChineseAcademyofSciences2ndGenerationNeuralNetworks多层感知机(Multi-layerPerceptron,MLP)超过1层的hiddenlayers(正确输出未知的层)BP算法[Rumelhartetal.,1986]Computeerrorsignal;Then,back-propagateerrorsignaltogetderivativesforlearning7DavidE.Rumelhart,,GeoffreyE.Hinton,andRonaldJ.Williams.(Oct.1986).Learningrepresentationsbyback-propagatingerrors.Nature323(6088):533–536ƩƩƩƩƩƩInstituteofComputingTechnology,ChineseAcademyofSciencesErrorBackpropagationWistheparameterofthenetwork;JistheobjectivefunctionFeedforwardoperationBackerrorpropagationDavidE.Rumelhart,,GeoffreyE.Hinton,andRonaldJ.Williams.(Oct.1986).Learningrepresentationsbyback-propagatingerrors.Nature323(6088):533–536OutputlayerHiddenlayersInputlayerTargetvaluesInstituteofComputingTechnology,ChineseAcademyofSciences2ndGenerationNeuralNetworks理论上多层好两层权重即可逼近任何连续函数映射遗憾的是,训练困难ItrequireslabeledtrainingdataAlmostalldataisunlabeled.ThelearningtimedoesnotscalewellItisveryslowinnetworkswithmultiplehiddenlayers.ItcangetstuckinpoorlocaloptimaTheseareoftenquitegood,butfordeepnetstheyarefarfromoptimal.9InstituteofComputingTechnology,ChineseAcademyofSciences1990-2006更流行…SpecificmethodsforspecifictasksHand-craftedfeatures(SIFT,LBP,HOG)MLmethodsSVMKerneltricksBoostingAdaBoostkNNDecisiontree10Krugeretal.TPAMI’13InstituteofComputingTechnology,ChineseAcademyofSciencesABreakthroughBackto20062006年,通过分层的、无监督预训练,终于获得了训练深层网络结构的能力11InstituteofComputingTechnology,ChineseAcademyofSciencesABreakthroughBackto2006Hinton,G.E.,Osindero,S.andTeh,Y.,Afastlearningalgorithmfordeepbeliefnets.NeuralComputation18:1527-1554,2006Hinton,G.E.andSalakhutdinov,R.R.(2006)Reducingthedimensionalityofdatawithneuralnetworks.Science,Vol.313.no.5786,pp.504-507,28July2006YoshuaBengio,PascalLamblin,DanPopoviciandHugoLarochelle,GreedyLayer-WiseTrainingofDeepNetworks,AdvancesinNeuralInformationProcessingSystems19(NIPS2006)Marc’AurelioRanzato,ChristopherPoultney,SumitChopraandYannLeCun.EfficientLearningofSparseRepresentationswithanEnergy-BasedModel,AdvancesinNeuralInformationProcessingSystems(NIPS2006)12InstituteofComputingTechnology,ChineseAcademyofSciences其实是有例外的——CNN卷积神经网络CNNK.Fukushima,“Neocognitron:Aself-organizingneuralnetworkmodelforamechanismofpatternrecognitionunaffectedbyshiftinposition,”BiologicalCybernetics,vol.36,pp.193–202,1980Y.LeCun,B.Boser,J.S.Denker,D.Henderson,R.E.Howard,W.Hubbard,andL.D.Jackel,“Backpropagationappliedtohandwrittenzipcoderecognition,”NeuralComputation,vol.1,no.4,pp.541–551,1989Y.LeCun,L.Bottou,Y.Bengio,andP.Haffner,“Gradient-basedlearningappliedtodocumentrecognition,”ProceedingsoftheIEEE,vol.86,no.11,pp.2278–2324,199813InstituteofComputingTechnology,ChineseAcademyofSciences其实是有例外的——CNNNeocognitron198014K.Fukushima,“Neocognitron:Aself-organizingneuralnetworkmodelforamechanismofpatternrecognitionunaffectedbyshiftinposition,”BiologicalCybernetics,vol.36,pp.193–202,1980LocalConnectionInstituteofComputingTechnology,ChineseAcademyofSciences例外:CNN用于数字识别15InstituteofComputingTechnology,ChineseAcademyofSciences例外:CNN用于目标检测与识别16InstituteofComputingTechnology,ChineseAcademyofSciences而且,东风同样重要大数据大数据大数据语音图像视频计算能力并行计算平台GPU大量部署开放的社区开源,开放数据17InstituteofComputingTechnology,ChineseAcademyofSciences语音识别(2011)1819862006DBNScienceSpeech2011BPInstituteofComputingTechnology,ChineseAcademyofSciences2012年计算机视觉的巨大进步ImageNet物体分类任务上物体分类任务:1000类,1,431,167幅图像1919862006DBNScienceSpeech20112012RankNameErrorrates(TOP5)Description1U.Toronto0.153Deeplearning2U.Tokyo0.261Hand-craftedfeaturesandlearningmodels.Bottleneck.3U.Oxford0.2704Xerox/INRIA0.271BPInstituteofComputingTechnology,ChineseAcademyofSciencesImageNetwithDeepCNN方法:大规模CNN网络20A.Krizhevsky,L.Sutskever,andG.E.Hinton,“ImageNetClassificationwithDeepConvolutionalNeuralNetworks,”NIPS,2012.InstituteofComputingTechnology,ChineseAcademyofSciencesImageNetwithDeepCNN方法:大规模CNN网络650K神经元,60M参数TrainedwithBPonGPU使用了各种技巧+dropoutReLU,Dataaugment,contrastnormalization,...被Google收编(Jan2013)Google+PhotoTagging(2013.5)21A.Krizhevsky,L.Sutskever,andG.E.Hinton,“ImageNetClassifi
本文标题:国科大中科院-人工智能与机器学习-12-DL
链接地址:https://www.777doc.com/doc-4429622 .html