您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 六年级数学下册5.6有理数的乘法(1)教案沪教版五四制
1有理数的乘法课题5.6(1)有理数的乘法设计依据(注:只在开始新章节教学课必填)教材章节分析:学生学情分析:课型新授课教学目标1.理解有理数乘法的意义,掌握有理数乘法的符号法则,并初步理解有理数乘法法则的合理性,能根据有数数乘法法则熟练地进行有理数的乘法运算。2.在学生思考、归纳有理数乘法法则的过程中,提高学生运用数学语言进行归纳、交流的能力。3.培养学生的数学素养。重点有理数的乘法法则、并能熟练地应用法则进行有理数的乘法运算。难点两数相乘的符号法则。教学准备整数和分数的乘法是本节课学习的基础,同时本节课的知识也是为进一步学习有理数的相乘的符号法则打下基础。学生活动形式教学过程设计意图课题引入:课前练习一课前练习二2×1=___;(-2)×1=___;2×(-1)=___;(-2)×(-1)=___.(-4)×3=___;(-4)×(-3)=___.以此练习对有理数加减法做复习。“新课探索一”以课件演示为主,间歇知识呈现:新课探索一一辆汽车以平均每小时80千米的速度沿着东西走向的公路行驶,现在它在公路A处.(1)如果它向东行驶2小时,那么它位于A处的哪个方向?与A处相距多少2千米?(2)如果它向西行驶2小时,那么它位于A处的哪个方向?与A处相距多少千米?(3)规定向东行驶为正,向西行驶为负;几小时后为正,几小时前为负.(4)如果它以前一直在向西行驶,那么2小时前它位于A处的哪个方向?与A处相距多少千米?新课探索二(1)2×80=160;2×(-80)=-160;(-2)×80=-160;(-2)×(-80)=160.由上述探索你得到什么启示?试一试(1)(-5)×(-3)=____;(2)4×(-6)=____;(3)(-8)×4=____;(4)(+7)×(+2)=____;(5)(-3)×0=___;(6)0×2=___.新课探索二(2)你能归纳出有理数乘法法则吗?有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与零相乘都得零.新课探索三例1计算:新课探索四例2用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km气温的变化量为-6℃,攀登3km后,气温有什么变提出问题让学生思考、回答,借助数轴分得出乘法算式。以上述例题中的四个算式为例,初步得出有理数乘法法则(或两数相乘的符号法则)。再借由试一试更加确立了这个想法,又通过最后两题完善了有理数乘法法则。3化?有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与零相乘都得零.新课探索三例1计算:新课探索四例2用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km气温的变化量为-6℃,攀登3km后,气温有什么变化?课内练习一1.计算下列各题:请看清运算符号,注意运算法则.课内练习二2.计算:巩固练习(由易到难)“课内练习一”可以直接口答,但要求学生注意运算符号。4课内练习三3.计算:课内练习四4.由(-4)×3=-12,(-4)×(-3)=12.你可得到什么结论?两个有理数相乘,把其中一个因数换成它的相反数,所得的积是原来积的相反数.课堂小结:有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与零相乘都得零.课外作业练习册P9习题5.6123预习要求教学后记与反思1、课堂时间消耗:教师活动分钟;学生活动分钟)2、本课时实际教学效果自评(满分10分):分3、本课成功与不足及其改进措施:小数的近似数教学内容义务教育课程标准实验教科书(西师大版)四年级(下)第84页例1,例2,第85页课堂活动第1,2题及练习十七第2,3题。教学目标123教具、学具准备多媒体课件。教学过程一、学习准备12二、引入新课教师:我们已经学过求一个整数的近似数,在现实生活中,有时也需要求出一个小数的近似数。这节课我们就来研究怎样求一个小数的近似数。(板书课题)三、教学新课1教师:同学们先看这样一个例子。(多媒体演示两个小孩对话)5教师:我国有13亿人,这个13亿实际上是一个近似数,根据2005年我国进行的全国百分之一人口抽样调查,当时我国人口应该是1306280000人,写成“亿”作单位的数是13.0628亿人。同学们想一想,为什么我们一般生活中不说是13.0628亿人,而说成是13亿人呢?学生讨论后回答。引导学生说出:(1)不说13.0628亿人而说13亿人是因为13亿比13.0628亿更好记忆;(2)13亿非常接近13.0628亿;(3)由于我国每时每刻都有人在出生或死亡,因此不可能非常精确地统计出我国人口总数,就是13.0628亿也是一个近似数,所以用13亿这个近似数更有利于我们记忆。21教师:生活中像这样用到小数的近似数的情况比较多,下面我们就来研究一下怎样求一个小数的近似值。我们先来看这样一个问题。课件出示鲸鱼图和鲸鱼的对话框。教师:这里要求用近似数来表示鲸鱼的体重,你知道为什么要用近似数来表示鲸鱼的体重吗?引导学生说出取近似数的理由。比如吨后面的第三位小数表示千克,几千克的体重对整只鲸鱼体重的影响不大;近似数比精确数更好记忆等。教师:老师也赞同同学们的这些理解。下面我们研究怎样求表示鲸鱼体重的这个小数的近似数,在研究这个问题之前,先想一想我们通常用什么方法求一个整数的近似数?
本文标题:六年级数学下册5.6有理数的乘法(1)教案沪教版五四制
链接地址:https://www.777doc.com/doc-4450946 .html