您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 《二次函数的应用》课件1(28张PPT)(沪科版九年级上)
二次函数的应用专题一:待定系数法确定二次函数无坚不摧:一般式已知二次函数的图象经过A(-1,6),B(1,2),C(2,3)三点,求这个二次函数的解析式;求出A、B、C关于x轴对称的点的坐标并求出经过这三点的二次函数解析式;求出A、B、C关于y轴对称的点的坐标并求出经过这三点的二次函数解析式;在同一坐标系内画出这三个二次函数图象;分析这三条抛物线的对称关系,并观察它们的表达式的区别与联系,你发现了什么?思维小憩:用待定系数法求二次函数的解析式,设出一般式y=ax2+bx+c是绝对通用的办法。因为有三个待定系数,所以要求有三个已知点坐标。一般地,函数y=f(x)的图象关于x轴对称的图象的解析式是y=-f(x)一般地,函数y=f(x)的图象关于y轴对称的图象的解析式是y=f(-x)显而易见:顶点式已知函数y=ax2+bx+c的图象是以点(2,3)为顶点的抛物线,并且这个图象通过点(3,1),求这个函数的解析式。(要求分别用一般式和顶点式去完成,对比两种方法)已知某二次函数当x=1时,有最大值-6,且图象经过点(2,-8),求此二次函数的解析式。思维小憩:用待定系数法求二次函数的解析式,什么时候使用顶点式y=a(x-m)2+n比较方便?知道顶点坐标或函数的最值时比较顶点式和一般式的优劣一般式:通用,但计算量大顶点式:简单,但有条件限制使用顶点式需要多少个条件?顶点坐标再加上一个其它点的坐标;对称轴再加上两个其它点的坐标;其实,顶点式同样需要三个条件才能求。灵活方便:交点式已知二次函数的图象与x轴交于(-2,0)和(1,0)两点,又通过点(3,-5),求这个二次函数的解析式。当x为何值时,函数有最值?最值是多少?已知二次函数的图象与x轴交于A(-2,0),B(3,0)两点,且函数有最大值2。求二次函数的解析式;设此二次函数图象顶点为P,求△ABP的面积思维小憩:用待定系数法求二次函数的解析式,什么时候使用顶点式y=a(x-x1)(x-x2)比较方便?知道二次函数图象和x轴的两个交点的坐标时使用交点式需要多少个条件?两个交点坐标再加上一个其它条件其实,交点式同样需要三个条件才能求求函数最值点和最值的若干方法:直接代入顶点坐标公式配方成顶点式借助图象的顶点在对称轴上这一特性,结合和x轴两个交点坐标求。二次函数的交点式已知二次函数的图象与x轴交于(-2,0)和(1,0)两点,又通过点(3,-5),求这个二次函数的解析式。当x为何值时,函数有最值?最值是多少?求函数最值点和最值的若干方法:直接代入顶点坐标公式配方成顶点式借助图象的顶点在对称轴上这一特性,结合和x轴两个交点坐标求。二次函数的三种式一般式:y=ax2+bx+c顶点式:y=a(x-m)2+n交点式:y=a(x-x1)(x-x2)已知二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(8,0),顶点是(6,-12),求这个二次函数的解析式。(分别用三种办法来求)二次函数的应用专题二:数形结合法简单的应用(学会画图)已知二次函数的图象与x轴交于A(-2,0),B(3,0)两点,且函数有最大值2。求二次函数的解析式;设此二次函数图象顶点为P,求△ABP的面积在直角坐标系中,点A在y轴的正半轴上,点B在x轴的负半轴上,点C在x轴的正半轴上,AC=5,BC=4,cos∠ACB=3/5。求A、B、C三点坐标;若二次函数图象经过A、B、C三点,求其解析式;求二次函数的对称轴和顶点坐标二次函数的应用专题三:二次函数的最值应用题二次函数最值的理论求函数y=(m+1)x2-2(m+1)x-m的最值。其中m为常数且m≠-1。最小值呢?呢?此时是最大值还是时,函数的最值是你能说明为什么当abacyabx4422最值应用题——面积最大某工厂为了存放材料,需要围一个周长160米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大。窗的形状是矩形上面加一个半圆。窗的周长等于6cm,要使窗能透过最多的光线,它的尺寸应该如何设计?BCDAO最值应用题——面积最大•用一块宽为1.2m的长方形铁板弯起两边做一个水槽,水槽的横断面为底角120º的等腰梯形。要使水槽的横断面积最大,它的侧面AB应该是多长?ADBC最值应用题——路程问题快艇和轮船分别从A地和C地同时出发,各沿着所指方向航行(如图所示),快艇和轮船的速度分别是每小时40km和每小时16km。已知AC=145km,经过多少时间,快艇和轮船之间的距离最短?(图中AC⊥CD)DCA145km最值应用题——销售问题某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?最值应用题——销售问题某商场以每件42元的价钱购进一种服装,根据试销得知这种服装每天的销售量t(件)与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+204。写出商场卖这种服装每天销售利润y(元)与每件的销售价x(元)间的函数关系式;通过对所得函数关系式进行配方,指出商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适?最大利润为多少?最值应用题——运动观点在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动。如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:运动开始后第几秒时,△PBQ的面积等于8cm2设运动开始后第t秒时,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围;t为何值时S最小?求出S的最小值。QPCBAD最值应用题——运动观点在△ABC中,BC=2,BC边上的高AD=1,P是BC上任一点,PE∥AB交AC于E,PF∥AC交AB于F。设BP=x,将S△PEF用x表示;当P在BC边上什么位置时,S值最大。DFEPCBA在取值范围内的函数最值的最大值和最小值。,讨论函数设54302xxyx的最大值和最小值。,讨论函数设4421312xxyx二次函数的应用专题四:二次函数综合应用题如图所示,公园要建造圆形喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25米。由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1米处达到距水面最大高度2.25米。(1)如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5米,要使水流不落到池外,此时水流的最大高度应达到多少米?(精确到0.1米)OA某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算)。设销售单价为x元,日均获利为y元。求y关于x的函数关系式,并注明x的取值范围。将上面所求出的函数配方成顶点式,写出顶点坐标。并指出单价定为多少元时日均获利最多,是多少?某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件)。在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面32/3米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为18/5米,问此次跳水会不会失误?并通过计算说明理由。解函数应用题的步骤:设未知数(确定自变量和函数);找等量关系,列出函数关系式;化简,整理成标准形式(一次函数、二次函数等);求自变量取值范围;利用函数知识,求解(通常是最值问题);写出结论。某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每天卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表(1),每1万元营业额所得利润情况如表(2)。商场将计划日营业额分配给三个经营部,设分配给百货部,服装部和家电部的营业额分别为x,y和z(单位:万元,x、y、z都是整数)。(1)请用含x的代数式分别表示y和z;(2)若商场预计每日的总利润为C(万元),且C满足19≤C≤19.7。问商场应如何分配营业额给三个经营部?各应分别安排多少名售货员?商品每1万元营业额所需人数百货类5服装类4家电类2商品每1万元营业额所得利润百货类0.3万元服装类0.5万元家电类0.2万元
本文标题:《二次函数的应用》课件1(28张PPT)(沪科版九年级上)
链接地址:https://www.777doc.com/doc-4459443 .html