您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 28.2解直角三角形第二课时
欢迎步入数学课堂教师刘国举(2)两锐角之间的关系∠A+∠B=90°(3)边角之间的关系caAA斜边的对边sincbBB斜边的对边sincbAA斜边的邻边coscaBB斜边的邻边cosbaAAA的邻边的对边tanabBBB的邻边的对边tan(1)三边之间的关系222cbaABabcC复习直角三角形的边角关系例3:2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多少(地球半径约为6400km,π取3.142,结果保留整数)?分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.解直角三角形在实际中的应用如图,⊙O表示地球,点F是飞船的位置,FQ是⊙O的切线,切点Q是从飞船观测地球时的最远点.的长就是地面上P、Q两点间的距离,为计算的长需先求出∠POQ(即α)PQ⌒PQ⌒解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.9481.035064006400cosOFOQa54.18a2071180142.3142.354.18180640054.18当飞船在P点正上方时,从飞船观测地球时的最远点Q距离P点约2071km·OQFPα∴PQ的长为:⌒例4:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)分析:我们知道,在视线与水平线所成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,在图中,a=30°,β=60°Rt△ABC中,a=30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.ABCDαβ仰角水平线俯角解:如图,a=30°,β=60°,AD=120.ADCDADBDatan,tan30tan120tanaADBD3403312060tan120tanADCD312031203120340CDBDBC1.2773160答:这栋楼高约为277.1mABCDαβ1.建筑物BC上有一旗杆AB,由距BC40m的D处观察旗杆顶部A的仰角54°,观察底部B的仰角为45°,求旗杆的高度(精确到0.1m)ABCD40m54°45°ABCD40m54°45°解:在等腰三角形BCD中∠ACD=90°BC=DC=40m在Rt△ACD中tanACADCDCtan54401.384055.2所以AB=AC-BC=55.2-40=15.2答:棋杆的高度为15.2m.练习tanDCAC∠ADC2.如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=140°,BD=520m,∠D=50°,那么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m)50°140°ABCED∴∠BED=∠ABD-∠D=90°cosDEBDEBDcos505200.64520332.8答:开挖点E离点D332.8m正好能使A,C,E成一直线.解:要使A、C、E在同一直线上,则∠ABD是△BDE的一个外角cos520DE∠BDE利用解直角三角形的知识解决实际问题的一般过程:1、将实际问题转化为数学问题(画出平面图形,转化为解直角三角形的为题)2、根据条件的特点,适当选用锐角三角函数等去解直角三角形;3、得到数学问题的答案;4、得到实际问题的答案;小结作业:做练习册
本文标题:28.2解直角三角形第二课时
链接地址:https://www.777doc.com/doc-4459592 .html