您好,欢迎访问三七文档
1第6讲幂函数与二次函数【2013年高考会这样考】1.求二次函数的解析式.2.求二次函数的值域与最值.3.利用幂函数的图象和性质分析解决有关问题.【复习指导】本讲复习时,应从“数”与“形”两个角度来把握二次函数和幂函数的图象和性质,重点解决二次函数在闭区间上的最值问题,掌握求函数最值的常用方法:配方法、判别式法、不等式法、换元法、导数法等,注重分类讨论思想与数形结合思想的综合应用.基础梳理1.幂函数的定义一般地,形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.2.幂函数的图象在同一平面直角坐标系下,幂函数y=x,y=x2,y=x3,y=x12,y=x-1的图象分别如右图.3.幂函数的性质y=xy=x2y=x3y=x12y=x-1定义域RRR[0,+∞){x|x∈R且x≠0}值域R[0,+∞)R[0,+∞){y|y∈R且y≠0}奇偶性奇偶奇非奇非偶奇2单调性增x∈[0,+∞)时,增x∈(-∞,0]时,减增增x∈(0,+∞)时,减x∈(-∞,0)时,减定点(0,0),(1,1)(1,1)4.二次函数的图象和性质解析式f(x)=ax2+bx+c(a0)f(x)=ax2+bx+c(a0)图象定义域(-∞,+∞)(-∞,+∞)值域4ac-b24a,+∞-∞,4ac-b24a单调性在x∈-b2a,+∞上单调递增在x∈-∞,-b2a上单调递增在x∈-∞,-b2a上单调递减在x∈-b2a,+∞上单调递减奇偶性当b=0时为偶函数,b≠0时为非奇非偶函数顶点-b2a,4ac-b24a对称性图象关于直线x=-b2a成轴对称图形5.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0)(2)顶点式:f(x)=a(x-h)2+k(a≠0)(3)两根式:f(x)=a(x-x1)(x-x2)(a≠0)五个代表函数y=x,y=x2,y=x3,y=x12,y=x-1可做为研究和学习幂函数图象和性质的代表.3两种方法函数y=f(x)对称轴的判断方法(1)对于二次函数y=f(x)对定义域内所有x,都有f(x1)=f(x2),那么函数y=f(x)的图象关于x=x1+x22对称.(2)对于二次函数y=f(x)对定义域内所有x,都有f(a+x)=f(a-x)成立的充要条件是函数y=f(x)的图象关于直线x=a对称(a为常数).双基自测1.(2011·安徽)设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)=().A.-3B.-1C.1D.3解析∵f(x)为奇函数,∴f(1)=-f(-1)=-3.答案A2.(人教A版教材例题改编)如图中曲线是幂函数y=xn在第一象限的图象.已知n取±2,±12四个值,则相应于曲线C1,C2,C3,C4的n值依次为().A.-2,-12,12,2B.2,12,-12,-2C.-12,-2,2,12D.2,12,-2,-12答案B3.(2011·浙江)设函数f(x)=-x,x≤0,x2,x>0.若f(α)=4,则实数α等于().A.-4或-2B.-4或2C.-2或4D.-2或2解析由α≤0,-α=4或α>0,α2=4,得α=-4或α=2,故选B.答案B4.已知函数f(x)=x2-2x+2的定义域和值域均为[1,b],则b等于().A.3B.2或3C.2D.1或2解析函数f(x)=x2-2x+2在[1,b]上递增,由已知条件f=1,fb=b,b1,即b2-3b+2=0,b1.解得b=2.4答案C5.(2012·武汉模拟)若函数f(x)=(x+a)(bx+2a)(常数a、b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.解析f(x)=bx2+(ab+2a)x+2a2由已知条件ab+2a=0,又f(x)的值域为(-∞,4],则a≠0,b=-2,2a2=4.因此f(x)=-2x2+4.答案-2x2+4考向一二次函数的图象【例1】►(2010·安徽)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是().[审题视点]分类讨论a>0,a<0.解析若a>0,则bc>0,根据选项C、D,c<0,此时只有b<0,二次函数的对称轴方程x=-b2a>0,选项D有可能;若a<0,根据选项A,c<0,此时只能b>0,二次函数的对称轴方程x=-b2a>0,与选项A不符合;根据选项B,c>0,此时只能b<0,此时二次函数的对称轴方程x=-b2a<0,与选项B不符合.综合知只能是选项D.答案D分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点、函数图象的最高点与最低点等.5【训练1】已知二次函数f(x)的图象如图所示,则其导函数f′(x)的图象的大致形状是().解析由函数f(x)的图象知:当x∈(-∞,1]时,f(x)为减函数,∴f′(x)≤0;当x∈[1,+∞)时,f(x)为增函数,∴f′(x)≥0.结合选项知选C.答案C考向二二次函数的性质【例2】►函数f(x)=x2-2x+2在闭区间[t,t+1](t∈R)上的最小值记为g(t).(1)试写出g(t)的函数表达式;(2)作g(t)的图象并写出g(t)的最小值.[审题视点]分类讨论t的范围分别确定g(t)解析式.解(1)f(x)=(x-1)2+1.当t+1≤1,即t≤0时,g(t)=t2+1.当t1t+1,即0t1时,g(t)=f(1)=1当t≥1时,g(t)=f(t)=(t-1)2+1综上可知g(t)=t2+1≤0,t≤0,1,0t1,t2-2t+2,t≥1.(2)g(t)的图象如图所示,可知g(t)在(-∞,0]上递减,在[1,+∞)上递增,因此g(t)在[0,1]上取到最小值1.(1)二次函数y=ax2+bx+c,在(-∞,+∞)上的最值可由二次函数图象的顶点坐标公式求出;(2)二次函数y=ax2+bx+c,在[m,n]上的最值需要根据二次函数y=ax2+bx+c图象对称轴的位置,通过讨论进行求解.【训练2】已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值.6(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.解(1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5],∴x=1时,f(x)取得最小值1;x=-5时,f(x)取得最大值37.(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为直线x=-a,∵y=f(x)在区间[-5,5]上是单调函数,∴-a≤-5或-a≥5,故a的取值范围是a≤-5或a≥5.考向三幂函数的图象和性质【例3】►已知幂函数f(x)=xm2-2m-3(m∈N*)的图象关于y轴对称,且在(0,+∞)上是减函数,求满足(a+1)-m3<(3-2a)-m3的a的取值范围.[审题视点]由幂函数的性质可得到幂指数m2-2m-3<0,再结合m是整数,及幂函数是偶数可得m的值.解∵函数在(0,+∞)上递减,∴m2-2m-3<0,解得-1<m<3.∵m∈N*,∴m=1,2.又函数的图象关于y轴对称,∴m2-2m-3是偶数,而22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,∴m=1.而f(x)=x-13在(-∞,0),(0,+∞)上均为减函数,∴(a+1)-13<(3-2a)-13等价于a+1>3-2a>0或0>a+1>3-2a或a+1<0<3-2a.解得a<-1或23<a<32.故a的取值范围为a|a<-1或23<a<32.本题集幂函数的概念、图象及单调性、奇偶性于一体,综合性较强,解此题的关键是弄清幂函数的概念及性质.解答此类问题可分为两大步:第一步,利用单调性和奇偶性(图象对称性)求出m的值或范围;第二步,利用分类讨论的思想,结合函数的图象求出参数a的取值范围.7【训练3】幂函数y=xa,当a取不同的正数时,在区间[0,1]上它们的图象是一族美丽的曲线(如图).设点A(1,0),B(0,1),连接AB,线段AB恰好被其中的两个幂函数y=xα,y=xβ的图象三等分,即有|BM|=|MN|=|NA|.那么,αβ=().A.1B.2C.3D.无法确定解析法一由条件得M13,23,N23,13,由一般性,可得13=23α,23=13β,即α=log2313,β=log1323.所以αβ=log2313·log1323=lg13lg23·lg23lg13=1.法二由解法一,得13=23α,23=13β,则13αβ=13βα=23a=13,即αβ=1.答案A规范解答4——如何求解二次函数在某个闭区间上的最值【问题研究】二次函数在闭区间上的最值问题,一定要根据对称轴与区间的相对位置关系确定最值,当函数解析式中含有参数时,要根据参数的取值情况进行分类讨论,避免漏解.【解决方案】对于二次函数f(x)=ax2+bx+c(a≠0)而言,首先确定对称轴,然后与所给区间的位置关系分三类进行讨论.【示例】►(本题满分12分)(2011·济南模拟)已知f(x)=-4x2+4ax-4a-a2在区间[0,1]内有最大值-5,求a的值及函数表达式f(x).求二次函数f(x)的对称轴,分对称轴在区间的左侧、中间、右侧讨论.[解答示范]∵f(x)=-4x-a22-4a,∴抛物线顶点坐标为a2,-4a.(1分)①当a2≥1,即a≥2时,f(x)取最大值-4-a2.8令-4-a2=-5,得a2=1,a=±1<2(舍去);(4分)②当0<a2<1,即0<a<2时,x=a2时,f(x)取最大值为-4a.令-4a=-5,得a=54∈(0,2);(7分)③当a2≤0,即a≤0时,f(x)在[0,1]内递减,∴x=0时,f(x)取最大值为-4a-a2,令-4a-a2=-5,得a2+4a-5=0,解得a=-5或a=1,其中-5∈(-∞,0].(10分)综上所述,a=54或a=-5时,f(x)在[0,1]内有最大值-5.∴f(x)=-4x2+5x-10516或f(x)=-4x2-20x-5.(12分)求解本题易出现的问题是直接利用二次函数的性质——最值在对称轴处取得,忽视对称轴与闭区间的位置关系,不进行分类讨论.【试一试】设函数y=x2-2x,x∈[-2,a],求函数的最小值g(a).[尝试解答]∵函数y=x2-2x=(x-1)2-1,∴对称轴为直线x=1,而x=1不一定在区间[-2,a]内,应进行讨论.当-2<a<1时,函数在[-2,a]上单调递减,则当x=a时,ymin=a2-2a;当a≥1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,则当x=1时,ymin=-1.综上,g(a)=a2-2a,-2<a<1,-1,a≥1.
本文标题:【创新方案】2013年高考数学一轮复习-第二篇-函数与基本初等函数Ⅰ第6讲-幂函数与二次函数-理-新
链接地址:https://www.777doc.com/doc-4460937 .html