您好,欢迎访问三七文档
1.培养基的配制原理=B2SX0TUS5KB2ovXQcKyds9MS9OnW7y5Yn204CH3vg44FsTWICJAnwePCb013a9T-vzmX5g9oCbv6GSuPahN6jfA9hVhQXCd3QCMZ_NTscu7步骤LB培养基,是微生物学实验中最常用的培养基,用于培养大肠杆菌等细菌,其分为液态或是加入琼脂制成的固态培养基。加入抗生素的LB培养基可用于筛选以大肠杆菌为宿主的克隆。尽管该培养基的名称被广泛解释为Luria-Bertani培养基,然而根据其发明人贝尔塔尼(GiuseppeBertani)的说法,这个名字来源于英语的lysogenybroth,即溶菌肉汤。LB培养基的配制:成分胰蛋白胨(tryptone)10g酵母提取物(yeastextract)5g氯化钠(NaCl)10g固体培养基另加琼脂粉15-20g加双蒸水至1000mL,用5mol/LNaOH(约0.2ml)调pH至7.2,121℃灭菌30min配制方法(1)称量分别称取所需量的胰化蛋白胨、酵母提取物和NaCl,置于烧杯中。(2)溶化加入所需水量2/3的蒸馏水于烧杯中,用玻棒搅拌,使药品全部溶化。(3)调pH用1mol/LNaOH溶液调pH至7.2。(4)定容将溶液倒入量筒中,加水至所需体积。(5)加琼脂加入所需量琼脂,加热融化,补足失水。(6)分装、加塞、包扎。(7)高压蒸汽灭菌100Pa灭菌20min。2、大肠杆菌菌种活化原理菌种的活化就是将处于保藏状态的菌种放入合适的培养基中进行培养,逐级增大培养是为了得到纯而壮的培养物,可以理解为就是为了获得活力旺盛的、接种数量足够的培养物进行培养。菌种发酵一般情况下需要2-3代的复壮过程,因为保存时的条件往往和培养时的条件不相同,所以要活化,让菌种逐渐适应培养环境中药标准对照品研究中心建议实验要明白菌种活化的情况就首选需要了解菌种保藏的方式和方法。目前国际和国内常用的菌种保存方法包括:定期移植法、液体石蜡法、沙土管法、真空冷冻干燥法、80℃冰箱冻结法、液氮超低温冻结法。对于不同的保存方式活化的方式也不同:1定期移植法的菌种复苏较简单,直接转接即可;2液体石蜡法保存的菌种在复苏时,挑取少量菌体转接在适宜的新鲜培养基上,生长繁殖后,再重新转接一次;3沙土管法保存菌种在复苏时,在无菌条件下打开沙土管,取部分沙土粒于适宜的斜面培养基上,长出菌落后再转接一次。或取沙土粒于适宜的液体培养基中,增殖培养后再转接斜面;4真空冷冻干燥法保存菌种在复苏时先用70%酒精棉花擦拭安瓿上部,将安瓿管顶部烧热,用无菌棉签沾冷水,在顶部擦一圈,顶部出现裂纹,用挫刀或镊子颈部轻叩一下,敲下已开裂的安瓿管的顶端,用无菌水或培养液溶解菌块,使用无菌吸管移入新鲜培养基上,进行适温培养;5-80℃冰箱冻结法保存菌种复苏时,从冰箱中取出安瓿管或塑料冻存管,应立即放置38℃-40℃水浴中快速复苏并适当快速摇动。直到内部结冰全部溶解为止,约需50秒-100秒。开启安瓿管或塑料冻存管,将内容物移至适宜的培养基上进行培养6液氮超低温冻结法保存菌种复苏与-80℃冰箱冻结法保存菌种复苏相似,从液氮罐中取出安瓿管或塑料冻存管,应立即放置在38℃-40℃水浴中快速复苏并适当摇动。直到内部结冰全部溶解为止,一般约需50秒-100秒。开启安瓿管或塑料冻存管,将内容物移至适宜的培养基上进行培养。步骤总结一下菌种活化需要以下几个步骤:第一配置菌种适宜生长的培养基第二将菌种从保藏状态恢复到室温状态,比如将冷冻的菌种解冻第三将通过操作将保藏的菌种接种到培养基中培养,此步骤称为菌种复壮第四步挑选培养基茁壮的菌落,挑选其中部分菌落接种到新的培养基中培养,重复此步骤2-3次,从而得到生长良好的菌落经过这四个步骤就到达将菌种从保藏状态活化的最终目的.举例大肠杆菌菌种活化方法:配活化培养基(LB):活化大肠杆菌配方:0.5g酵母粉,1g蛋白胨,1g氯化钠,稀释到100ml复苏细胞(去掉DMSO及冷冻过程中产生的有毒物质)材料:液氮中的细胞共1毫升:含20%血清(FBS),10%DMSO(防止细胞内产生冰晶),培养基步骤:一、从液氮(约-190度)中取出细胞(管中有1ml细胞)(稍微抖掉液体)二、快速放入37度水浴1分钟。三、加入1mlDMEM培养基融化冰晶。四、全部移入离心管中,管口封口膜封口;五、离心:1200r/min,5min。六、去上清(用大枪(1-5ml)一次吸出,吸时沉淀朝上);G2细胞沉淀较明显七、先(用1ml小枪)加到离心管中1ml培养基并吹打吸出到培养瓶中,再加1ml培养基润洗离心管吸出到培养瓶中,然后用大枪加3ml培养基到培养瓶中(补足5毫升);八、培养瓶放入37度温箱。3、质粒的提取一、导论已经提出过许多方法用于从细菌中提纯质粒DNA,这些方法都含有以下3个步骤:细菌培养物的生长。细菌的收获和裂解质粒DNA的纯化。(一)细菌培养物的生长从琼脂平板上挑取一个单菌落,接种到培养物中(有含有行当抗生素的液体培养基中生长),然后从中纯化质粒,质粒的提纯几乎总是如此。现在使用的许多质粒载体(如pUC系列)都能复制到很高的拷贝数,惟致只要将培养物放在标准LB培养基中生长到对数晚期,就可以大量提纯质粒。此时,不必造反性地扩增质粒DNA。然而,较长一代的载体(如pBR322)由于不能如此自由地复制,所以需要在得到部分生长的细菌培养物中加入氯霉素继续培养若干小时,以便对质粒进行性扩增。氯霉素可抑制宿主的蛋白质合成,结果阻止了细菌染色体的复制,然而,松弛型质粒仍可继续复制,在若干小时内,其拷贝数持续递增。这样,像pBR322-类的质粒,从经氯霉素处理和未经处理的培养物中提取质粒的产量迥然不同,前者大为增高。多年来,加入足以完全抑制蛋白质合成的氯霉素μg/ml)已成为标准的操作、用该方法提取的质粒DNA量,对于分子克隆中几乎所有想象到的工作任务。(二)细菌的收获和裂解细菌的收获可通过离心来进行,而细菌的裂解则可以采用多种方法中的任意一种,这些方法包括用非离子型或离子型去污剂、有机溶剂或碱进行处理及用加热处理等。选择哪一种方法取决于3个因素:质粒的大小、小肠杆菌菌株及裂解后用于纯化质粒DNA的技术。尽管针对质粒和宿主的每一种组合分别提出精确的裂解条件不切实际,但仍可据下述一般准则来选择适当方法,以取得满意的结果。1)大质粒(大于15kb)容易受损,故应采用漫和裂解法从细胞中释放出来。将细菌悬于蔗糖等渗溶液中,然后用溶菌酶和EDTA进生处理,破坏细胞壁和细胞外膜,再加入SDS一类去污剂溶解球形体。这种方法最大限度地减小了从具有正压的细菌内部把质粒释放出来所需要的作用力。2)加200μl新配制的溶液Ⅱ。溶液Ⅱ0.2mol/LNaOH(临用前用10mol/L贮存液现用现稀释)1%SDS盖紧管口,快速颠倒离心管5次,以混合内容物。应确保离心管的整个内表面均与溶液Ⅱ接触。不要振荡,将离心管放置于冰上。3)加150μl用冰预冷的溶液Ⅲ溶液Ⅲ5mol/L乙酸钾60ml冰乙酸11.5ml水28.5ml所配成的溶液对钾是3mol/L,对乙酸根是5mol/L。盖紧管口,将管倒置后和地振荡10秒钟溶液Ⅲ在粘稠的细菌裂解物中分散均匀,之后将管置于冰上3-5分钟。4)用微量离心机于4℃12000g离心5分种,将上清转移到另一离心管中。5)可做可不做:加等量酚:氯念,振荡混匀,用微量离心机于4℃以12000g离心2分钟,将上清转移到另一良心管中。有些工作者认为不必用酚:氯仿进行抽提,然而由于一些未知的原因,省略这一步,往往会得到可耐受限制酶切反应的DNA。6)用2倍休积的乙醇于室温沉淀双锭DNA。振荡混合,于室温放置2分钟。7)用微量离心机于4℃以12000g离心5分钟。8)小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。再将附于管壁的液滴除尽。除去上清的简便方法是用一次性使用的吸头与真空管道相连,并用吸头接触液面。当液体从管中吸出时,尽量使吸头远离核酸沉淀,然后继续用吸头通过抽真空除去附于管壁的液滴。9)用1ml70%乙醇于4℃洗涤双链DNA沉淀,按步骤8)所术方法去掉上清,在空气中使核酸沉淀干燥10分钟。i.此法制备的高拷贝数质粒(如Xf3或pUC),其产量一般约为:每毫升原细菌培养物3-5μg。ii.如果要通过限制酶切割反应来分析DNA,可取1μlDNA溶液加到另一含8μl水的微量离心管内,加1μl10×限制酶缓冲液和1单位所需限制酶,在适宜温育1-2小时。将剩余的DNA贮存于-20℃。iii.此方法按适当比例放大可适用于100ml细菌培养物:3.煮沸裂解1)将细菌沉淀,所得重悬于350μlSTET中。STET0.1mol/LNaCL10mmol/LTris.Cl(pH8.0)1mmol/LEDTA(pH8.0)5%TritonX-1002)加25μl新配制的溶菌酶溶液[10mg/ml,用10mmol/LTris.Cl(pH8.0)配制],振荡3秒钟以混匀之。如果溶淮中pH低于8.0,溶菌酶就不能有效发挥作用。3)将离心管放入煮沸的水浴中,时间恰为40秒。4)用微量离心机于室温以12000g离心10分种。5)用无菌牙签从微量离心管中去除细菌碎片。6)在上清中加入40μl5mol/L乙酸钠(pH5.2)和420μl异丙醇,振荡混匀,于室温放置5分钟。7)用微量离心机于4℃以12000g离心5分种,回收核酸沉淀。8)小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。再将附于管壁的液滴除尽。除去上清的简便方法是用一次性使用的吸头与真空管道相连,轻缓抽吸,并用吸头接触液面。当液体从管中吸出时,尽可能使吸头远离核酸沉淀,然后继续用吸头通过抽真空除去附于管的液滴。9)加1ml70%乙醇,于4℃以12000g离心2分钟。2)可用更剧烈的方法来分离小质粒。在加入EDTA后,有时还在加入溶菌酶后让细菌暴露于去污剂,通过煮沸或碱处理使之裂解。这些处理可破坏碱基配对,故可使宿主的线状染色体DNA变性,但闭环质粒DNA链由于处于拓扑缠绕状态而不能彼此分开。当条件恢复正常时,质粒DNA链迅速得到准确配置,重新形成完全天然的超螺旋分子。3)一些大肠杆菌菌株(如HB101的一些变种衍生株)用去污剂或加热裂解时可释放相对大量的糖类,当随后用氯化铯-溴化乙锭梯度平衡离心进行质粒纯化时它们会惹出麻烦。糖类会在梯度中紧靠超螺旋质粒DNA所占位置形成一致密的、模糊的区带。因此很难避免质粒DNA内污染有糖类,而糖类可抑制多种限制酶的活性。故从诸如HB101和TG1等大肠杆菌蓖株中大量制备质粒时,不宜使用煮沸法。4)当从表达内切核酸酶A的大肠杆菌菌株(endA+株,如HB101)中小量制备质粒时,建议不使用煮沸法。因为煮沸不能完全灭活内切核酸酶A,以后在温育(如用限制酶消化)时,质粒DNA会被降解。但如果通过一个附加步骤(用酚:氯仿进行抽提)可以避免此问题。5)目前这一代质粒的拷贝数都非常高,以致于不需要用氯霉素进行选择性扩增就可获得高产。然而,某些工作者沿用氯霉素并不是要增加质粒DNA的产量,而是要降低细菌细胞在用于大量制备的溶液中所占体积。大量高度粘稠的浓缩细菌裂解物,处理起来煞为费事,而在对数中期在增减物中加入氯霉素可以避免这种现象。有氯霉素存在时从较少量细胞获得的质粒DNA的量以与不加氯霉素时从较大量细胞所得到的质粒DNA的量大致相等。(三)质粒DNA的纯化常使用的所有纯化方法都利用了质粒DNA相对较小及共价闭合环状这样两个性质。例如,用氯化铯-溴化乙锭梯度平衡离心分离质粒和染色体DNA就取决于溴化乙锭与线状以及与闭环DNA分子的结合量有所不同。溴化乙锭通过嵌入奋不顾身碱基之间而与DNA结合,进而使双螺旋解旋。由此导致线状DNA的长度有所增加,作为补偿,将在闭环质粒DNA中引入超螺旋单位。最后,超螺旋度大为增加,从而阻止了溴化乙锭分了的继续嵌入。但线状分子不受此限,可继续结合更多的染料,直至达到饱和(每2个碱基对大约结合1个溴化乙
本文标题:蛋白表达步骤
链接地址:https://www.777doc.com/doc-4463089 .html