您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 【课件三】28.1锐角三角函数
两块三角尺中有几个不同的锐角?分别求出这几个锐角的正弦值、余弦值和正切值.设30°所对的直角边长为a,那么斜边长为2a另一条直角边长=2223aaa1sin3022aa33cos3022aa3tan3033aa30°60°45°45°30°活动133sin6022aa1cos6022aa3tan603aa设两条直角边长为a,则斜边长=222aaa2cos4522aatan451aa2sin4522aa60°45°30°、45°、60°角的正弦值、余弦值和正切值如下表:锐角a三角函数30°45°60°sinacosatana1222322212332331例1求下列各式的值:(1)cos260°+sin260°(2)45tan45sin45cos解:(1)cos260°+sin260°222321=145tan45sin45cos(2)12222=0例2(1)如图,在Rt△ABC中,∠C=90°,,求∠A的度数.3,6BCAB解:(1)在图中,2263sinABBCA45AABC36(2)如图,已知圆锥的高AO等于圆锥的底面半径OB的倍,求a.33tanOBOBOBAOa60a解:(2)在图中,ABO3例3如图,在Rt△ABC中,∠ACB=90度,CD⊥AB于D,已知∠B=30度,计算的值。tansinACDBCDDABC例4如图,在△ABC中,∠A=30度,求AB。3tan,23,2BACABCD解:过点C作CD⊥AB于点D∠A=30度,23AC1sin2CDAAC12332CD3cos2ADAAC32332AD3tan2CDBBD2323BD325ABADBD1.求下列各式的值:(1)1-2sin30°cos30°(2)3tan30°-tan45°+2sin60°(3)30tan160sin160cos练习解:(1)1-2sin30°cos30°131222312(2)3tan30°-tan45°+2sin60°3331232313231cos601(3)1sin60tan301123312323322.在Rt△ABC中,∠C=90°,求∠A、∠B的度数.21,7ACBCBAC721解:由勾股定理71sin227BCAAB22222172827ABACBC∴A=30°∠B=90°-∠A=90°-30°=60°3.在Rt△ABC中,∠C=90度,tanA+tanB=4,△ABC面积为8,求AB的长。4.在Rt△ABC中,∠C=90度,化简12sincosAA小结30°、45°、60°角的正弦值、余弦值和正切值如下表:锐角a三角函数30°45°60°sinacosatana1222322212332331对于sinα与tanα,角度越大,函数值也越大;(带正)对于cosα,角度越大,函数值越小。
本文标题:【课件三】28.1锐角三角函数
链接地址:https://www.777doc.com/doc-4503396 .html