您好,欢迎访问三七文档
利用勾股定理求解几何体的最短路线长例1、如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?BAABC531512一、台阶中的最值问题∵AB2=AC2+BC2=169,∴AB=13.二、圆柱(锥)中的最值问题例2.有一圆柱形油罐底面圆的周长为24m,高为6m,一只老鼠从距底面1m的A处爬行到对角B处吃食物,它爬行的最短路线长为多少?AB分析:由于老鼠是沿着圆柱的表面爬行的,故需把圆柱展开成平面图形.根据两点之间线段最短,可以发现A、B分别在圆柱侧面展开图的宽1m处和长24m的中点处,即AB长为最短路线.(如图)解:AC=6–1=5,BC=24×=12,由勾股定理得AB2=AC2+BC2=169,∴AB=13(m).21BAC1.一个圆柱体的底面周长为24,高为5,AD为它的直径,一只蚂蚁从A点出发,沿着圆柱的表面爬行一圈到点B的最短路程是多少?BA变式:AB小试锋芒:2.如图,一个圆柱的底面周长为60cm,高AB=18cm,AF=1cm,CD=1cm,蚂蚁从C点爬行到F点的最短路程是多少?DC.EF.A例3、如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?ABA1B1DCD1C1214分析:根据题意分析蚂蚁爬行的路线有三种情况(如图①②③),由勾股定理可求得图1中AC1爬行的路线最短.ABDCD1C1①421AC1=√42+32=√25;②ABB1CA1C1412AC1=√62+12=√37;AB1D1DA1C1③412AC1=√52+22=√29.三、长方体中的最值问题1.如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是().(A)3(B)√5(C)2(D)1AB分析:由于蚂蚁是沿正方体的外表面爬行的,故需把正方体展开成平面图形(如图).CABC21挑战自我2.如图,长方形的上下底面为正方形,且边长为2,它的高为3,一只老鼠要从A爬到F处去吃食物,请问它走的最短路程是多少?322FA例4、如图,长方体的长为15cm,宽为10cm,高为20cm,点B到点C的距离为5cm,一只蚂蚁如果要沿着长方体的表面从A点爬到B点,需要爬行的最短距离是多少?201015BCA分析根据题意分析蚂蚁爬行的路线有两种情况(如图①②),由勾股定理可求得图1中AB最短.①BA2010155AB=√202+152=√625BAB=√102+252=√725②A2010155四、节节高升完美验收:1.如图,一个玻璃材质的长方体,其中AB=8,BC=4,BF=6,在顶点E处有一块爆米花残渣,一只蚂蚁从侧面BCSF的中心沿着长方体表面爬行到点E,则蚂蚁爬行的最短距离是多少?ABFDCRS小结:把几何体适当展开成平面图形,再利用“两点之间线段最短”,或点到直线“垂线段最短”等性质来解决问题。
本文标题:勾股定理最短路径
链接地址:https://www.777doc.com/doc-4538711 .html