您好,欢迎访问三七文档
11-3一质点在xOy平面上运动,运动方程为x=3t+5,y=21t2+3t-4.式中t以s计,x,y以m计.(1)以时间t为变量,写出质点位置矢量的表示式;(2)求出t=1s时刻和t=2s时刻的位置矢量,计算这1秒内质点的位移;(3)计算t=0s时刻到t=4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算t=4s时质点的速度;(5)计算t=0s到t=4s内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t=4s时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1)jttitr)4321()53(2m(2)将1t,2t代入上式即有jir5.081mjjr4112mjjrrr5.4312m(3)∵jirjjr1617,4540∴104sm534201204jijirrtrv(4)1sm)3(3ddjtitrv则jiv7341sm(5)∵jivjiv73,3340204sm1444jvvtva(6)2sm1ddjtva这说明该点只有y方向的加速度,且为恒量。1-4在离水面高h米的岸上,有人用绳子拉船靠岸,船在离岸S处,如题1-4图所示.当人以0v(m·1s)的速率收绳时,试求船运动的速度和加速度的大小.图1-4解:设人到船之间绳的长度为l,此时绳与水面成角,由图可知222shl将上式对时间t求导,得2tsstlldd2dd2题1-4图根据速度的定义,并注意到l,s是随t减少的,∴tsvvtlvdd,dd0船绳即cosdddd00vvsltlsltsv船或svshslvv02/1220)(船将船v再对t求导,即得船的加速度3202220202002)(ddddddsvhsvslsvslvsvvstsltlstva船船1-5质点沿x轴运动,其加速度和位置的关系为a=2+62x,a的单位为2sm,x的单位为m.质点在x=0处,速度为101sm,试求质点在任何坐标处的速度值.解:∵xvvtxxvtvadddddddd分离变量:xxadxd)62(d2两边积分得cxxv322221由题知,0x时,100v,∴50c∴13sm252xxv1-6已知一质点作直线运动,其加速度为a=4+3t2sm,开始运动时,x=5m,v=0,求该质点在t=10s时的速度和位置.解:∵ttva34dd分离变量,得ttvd)34(d积分,得12234cttv由题知,0t,00v,∴01c故2234ttv3又因为2234ddtttxv分离变量,tttxd)234(d2积分得232212cttx由题知0t,50x,∴52c故521232ttx所以s10t时m70551021102sm190102310432101210xv1-8质点沿半径为R的圆周按s=2021bttv的规律运动,式中s为质点离圆周上某点的弧长,0v,b都是常量,求:(1)t时刻质点的加速度;(2)t为何值时,加速度在数值上等于b.解:(1)btvtsv0ddRbtvRvabtvan202)(dd则240222)(Rbtvbaaan加速度与半径的夹角为20)(arctanbtvRbaan(2)由题意应有2402)(Rbtvbba即0)(,)(4024022btvRbtvbb∴当bvt0时,ba1-10以初速度0v=201sm抛出一小球,抛出方向与水平面成幔60°的夹角,求:(1)球轨道最高点的曲率半径1R;(2)落地处的曲率半径2R.(提示:利用曲率半径与法向加速度之间的关系)4解:设小球所作抛物线轨道如题1-10图所示.题1-10图(1)在最高点,o0160cosvvvx21sm10gan又∵1211van∴m1010)60cos20(22111nav(2)在落地点,2002vv1sm,而o60cos2gan∴m8060cos10)20(22222nav2-4质点在流体中作直线运动,受与速度成正比的阻力kv(k为常数)作用,t=0时质点的速度为0v,证明(1)t时刻的速度为v=tmkev)(0;(2)由0到t的时间内经过的距离为x=(kmv0)[1-tmke)(];(3)停止运动前经过的距离为)(0kmv;(4)证明当kmt时速度减至0v的e1,式中m为质点的质量.答:(1)∵tvmkvadd分离变量,得mtkvvdd即vvtmtkvv00ddmktevvlnln0∴tmkevv05(2)tttmkmkekmvtevtvx000)1(dd(3)质点停止运动时速度为零,即t→∞,故有000dkmvtevxtmk(4)当t=km时,其速度为evevevvkmmk0100即速度减至0v的e1.2-9一质量为m的质点在xOy平面上运动,其位置矢量为jtbitarsincos求质点的动量及t=0到2t解:质点的动量为)cossin(jtbitamvmp将0t和2t分别代入上式,得jbmp1,iamp2,则动量的增量亦即质点所受外力的冲量为)(12jbiampppI2-18如题2-18图所示,一物体质量为2kg,以初速度0v=3m·s-1从斜面A点处下滑,它与斜面的摩擦力为8N,到达B点后压缩弹簧20cm后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解:取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。则由功能原理,有37sin212122mgsmvkxsfr222137sin21kxsfmgsmvkr式中m52.08.4s,m2.0x,再代入有关数据,解得-1mN1390k题2-18图再次运用功能原理,求木块弹回的高度h62o2137sinkxsmgsfr代入有关数据,得m4.1s,则木块弹回高度m84.037sinosh题2-19图2-19质量为M的大木块具有半径为R的四分之一弧形槽,如题2-19图所示.质量为m的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度.解:m从M上下滑的过程中,机械能守恒,以m,M,地球为系统,以最低点为重力势能零点,则有222121MVmvmgR又下滑过程,动量守恒,以m,M为系统则在m脱离M瞬间,水平方向有0MVmv联立,以上两式,得MmMgRv22-20一个小球与一质量相等的静止小球发生非对心弹性碰撞,试证碰后两小球的运动方向互相垂直.证:两小球碰撞过程中,机械能守恒,有222120212121mvmvmv即222120vvv①题2-20图(a)题2-20图(b)又碰撞过程中,动量守恒,即有210vmvmvm亦即210vvv②由②可作出矢量三角形如图(b),又由①式可知三矢量之间满足勾股定理,且以0v为斜边,故知1v与2v是互相垂直的.2-22哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为1r=8.75×1010m时的速率是1v=5.46×104m·s-1,它离太阳最远时的速率是2v=9.08×102m·s-1这时它离太阳的距离2r多少?(太阳位于椭圆的一个焦点。)解:哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于7哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有2211mvrmvr∴m1026.51008.91046.51075.81224102112vvrr2-29图2-29如题2-29图所示,质量为M,长为l的均匀直棒,可绕垂直于棒一端的水平轴O无摩擦地转动,它原来静止在平衡位置上.现有一质量为m的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度30°处.(1)设这碰撞为弹性碰撞,试计算小球初速0v的值;(2)相撞时小球受到多大的冲量?解:(1)设小球的初速度为0v,棒经小球碰撞后得到的初角速度为,而小球的速度变为v,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvlIlmv0①2220212121mvImv②上两式中231MlI,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30,按机械能守恒定律可列式:)30cos1(2212lMgI③由③式得2121)231(3)30cos1(lgIMgl由①式mlIvv0④由②式mIvv2202⑤所以22001)(2mvmlIv求得8glmMmmMlmlIlv31232(6)311(2)1(220(2)相碰时小球受到的冲量为0dmvmvmvtF由①式求得MllImvmvtF31d0glM6)32(6负号说明所受冲量的方向与初速度方向相反.6-5速率分布函数)(vf的物理意义是什么?试说明下列各量的物理意义(n为分子数密度,N为系统总分子数).(1)vvfd)((2)vvnfd)((3)vvNfd)((4)vvvf0d)((5)0d)(vvf(6)21d)(vvvvNf解:)(vf:表示一定质量的气体,在温度为T的平衡态时,分布在速率v附近单位速率区间内的分子数占总分子数的百分比.(1)vvfd)(:表示分布在速率v附近,速率区间vd内的分子数占总分子数的百分比.(2)vvnfd)(:表示分布在速率v附近、速率区间dv内的分子数密度.(3)vvNfd)(:表示分布在速率v附近、速率区间dv内的分子数.(4)vvvf0d)(:表示分布在21~vv区间内的分子数占总分子数的百分比.(5)0d)(vvf:表示分布在~0的速率区间内所有分子,其与总分子数的比值是1.(6)21d)(vvvvNf:表示分布在21~vv区间内的分子数.6-10题6-10图(a)是氢和氧在同一温度下的两条麦克斯韦速率分布曲线,哪一条代表氢?题6-10图(b)是某种气体在不同温度下的两条麦克斯韦速率分布曲线,哪一条的温度较高?答:图(a)中(1)表示氧,(2)表示氢;图(b)中(2)温度高.9题6-10图6-13试说明下列各量的物理意义.(1)kT21(2)kT23(3)kTi2(4)RTiMMmol2(5)RTi2(6)RT23解:(1)在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量均为k21T.(2)在平衡态下,分子平均平动动能均为kT23.(3)在平衡态下,自由度为i的分子平均总能量均为kTi2.(4)由质量为M,摩尔质量为molM,自由度为i的分子组成的系统的内能为RTiMM2mol.(5)1摩尔自由度为i的分子组成的系统内能为RTi2.(6)1摩尔自由度为3的分子组成的系统的内能RT23,或者说热力学体系内,1摩尔分子的平均平动动能之总和为RT23.6-15何谓理想气体的内能?为什么理想气体的内能是温度的单值函数?解:在不涉及化学反应,核反应,电磁变化的情况下,内能是指分子的热运动能量和分子间相互作用势能之总和.对于理想气体不考虑分子间相互作用能量,质量为M的理想气体的所有分子的热运动能量称为理想气体的内能.由于理
本文标题:大学物理考试题库
链接地址:https://www.777doc.com/doc-4544822 .html