您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 综合/其它 > 垂直多关节型工业机器人设计
吉林农业大学学士学位毕业设计说明书题目名称:垂直多关节型工业机器人学生姓名:王光辉院系:工程技术学院专业年级:2006级机械指导教师:谢哲东职称:讲师2010年5月20日目录题目···········································································································································Ⅰ摘要及关键词···························································································································Ⅰ1前言········································································································································11.1机器人的发展概况···········································································································11.2中国研制机器人情况·······································································································31.3机器人产业·······················································································································31.4机器人的发展趋势···········································································································42设计任务书···························································································································52.1设计(论文)的主要内容与要求···················································································52.2设计(论文)的主要技术指标和相关的技术参数·······················································53总体方案设计·······················································································································63.1机器人系统工程概述·······································································································63.2工业机器人总体设计中总体方案的论证·······································································73.3机器人机械传动原理·······································································································84机械部分的结构设计与计算·······························································································104.1结构设计的特点···············································································································104.2机械结构的部分计算·······································································································125毕业设计总结·······················································································································23参考文献···································································································································23致谢···········································································································································24附录···········································································································································25I垂直多关节型工业机器人姓名:王光辉专业:机械设计制造及其自动化指导教师:谢哲东摘要:机器人既有人对环境的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。如今,机器人工业已成为世界各国备受关注的产业。关键词:机器人;工业;传动;强度Verticalmulti-jointtypeindustrialrobotName:wangguanghuiMajor:MachanicalDesign&ManufacturingAutomationTutor:xiezhedongAbstract:Robotpeopleontheenvironmentbothrapidreactionandanalyticalskills,butalsothemachinecancontinuetoworklonghours,Highaccuracy,abilitytoresistbadenvironmental,Inasenseitisaproductoftheevolutionofthemachine,Itistheindustrialandnon-industrialsector,animportantproductionandserviceequipment,Advancedmanufacturingtechnologyisindispensableautomationequipment。Today,therobotindustryhasbecometheindustrycloselywatchedaroundtheworld.Keywords:Robot;industry;transmission;strength11前言1.1机器人的发展概况第一代遥控机械手1948年诞生于美国的阿贡实验室,当时用来对放射性材料进行远距离操作,以保护原子能工作者免受放射线照射。第一台工业机器人诞生于1956年,是英格尔博格(J.Engelbrger)将控制技术与机械臂相结合的产物。当时,主要是为了克服串联机构累积的系统误差,以便达到较高的空间定位精度,提出了示教再现的编程方式,从而使重复定位精度差不多比绝对定位精度提高了一个数量级。至今绝大部分使用中的工业机器人仍采用这种编程方式。第一台工业机器人的商用产品诞生于1962年,当时,其作业仅限于上、下料。尔后的发展比预想中的要慢。20世纪60年代,美、英等国很多学者,把机器人作为人智能的载体,来研究如何使机器人具有环境识别、问题求解以及规划能力,祈望使机器人具有类似人的高度自治功能,结果是始终停留在实验室阶段。其中美国著名的斯坦福研究所的眼车计划,虽然形式上实现了心理学中典型的猴子和香蕉问题的求解,然而由于距离解决实际中的复杂问题太远,因而得不到进一步的支持,只好于1972年中止。20世纪60年代末至70年代中,世界上很多著名的实验室、大学和研究所,如英国的爱丁堡大学人工智能实验室,英国的斯坦福大学、斯坦福研究所、麻省理工学院,以及日本的日立中央研究所等,都在致力了机器人装配作业的研究,单纯从技术出发模仿人进行的作业,或实现看图装配,或自动装配顺序生成等。由于当时的工业水平还没有发展到相应的阶段,无法解决所遇到的技术难题,另一方面因耗费巨大而无法得到应用部门的支持。至20世纪70年代中,由于所订目标过高,除了局部单元技术方面取得不少有意义的成果外,整体上说大部分研究没有取得有意义的实际结果[2]。1968年,日本川崎重工引进美国Unimation公司的Unimate机器人制造技术,开始了日本机器人的时代,经过近十年的努力,开发了点焊、弧焊及各种上、下料作业的简易经济型机器人。成功地把机器人应用到汽车工业、铸塑工业、机械制造业……,从而大大地提高了制成品的一致性及质量,形成了一定规模的机器人产业。20世纪70年代,出现了更多的机器人商品,并在工业发达国家的工业生产中逐步推广应用。1979年公司Unimation推出了PUMA系列工业机器人,它的关节由电动机驱动,可配置视觉、触觉、力觉传感器,是技术较为先进的机器人。到1980年,全世界有2万余台机器人在工业中应用。20世纪80年代工业机器人产业得到了巨大的发展,但是所开发的四大类型机器人(点焊、弧焊、喷涂、上下料)主要用于汽车工业。工业化国家的机器人产值,以年均20%~40%的增长率上升。1984年全世界机器人使用总台数为8万台,到1985年底,己达14万台,到1990年已有30万台左右,其中高性能的机器人所占比例不断增加,特别是各种装配机器人的产量增加较快,和机器人配套使用的机器视觉技术和装备也得到2迅速发展。1985年前后,FANUC和GWF公司又先后推出了交流伺服驱动的工业机器人产品。随着以提高质量为目的的装配机器人及柔性装配线的开发成功,1989年机器人产业首先在日本,之后在各主要工业国呈发展趋势。进人20世纪90年代后,装配机器人及柔性装配技术将进入大发展时期。日本一直拥有全世界机器人总数的60%左右。到1998年,美国拥有机器人8万台,德国为7万多台,分别占世界机器人总数的15%和13%左右。到2000年,服役的机器人总数约100万台。机器人大都工作于结构性环境中,即工作任务、完成工作的步骤、工件存放的位置、工作对象等都是事先已知的,而且定位精度也是完全确定的,所以机器人完全可以按事先示教编好的程序重复不断地工作。当自动化进一步向建筑、采掘、运输等行业扩展时,其环境则是非结构化的,不能事先确定,或至少不能完全
本文标题:垂直多关节型工业机器人设计
链接地址:https://www.777doc.com/doc-45536 .html