您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 重庆大学混凝土基本原理复习提纲(原创归纳)
混凝土提纲第一章绪论混凝土结构包括:素混凝土结构、钢筋混凝土结构、预应力混凝土结构。钢筋混凝土发挥作用的前提:一、受力钢筋与混凝土必须可靠地粘结,以保证两者共同变形,共同受力。二、两种材料的温度膨胀系数十分接近。三、符合构造和计算要求,保证施工正确。钢筋混凝土结构的主要优点:一、取材容易二、合理用材三、耐久性较好四、耐火性好五、可模型好六、整体性好建筑结构的功能包括:安全性(承载能力)、适用性(正常使用)、耐久性(设计使用年限)结构的极限状态:承载能力极限状态:结构或构件达到最大承载能力或者变形达到不适于继续承载的状态。安全性正常使用极限状态:结构或构件达到正常使用或耐久性能中,某项规定限度的状态。适用性和耐久性荷载设计值等于标准值乘以荷载分项系数,设计值大于标准值。材料设计值小于标准值。(材料是我,荷载是敌人。要把敌人想的强一点,自己想的弱一点,这样才能准备的更好去打败对方)第二章混凝土结构材料的物理力学性能补充:材料的力学性能,2混凝土的强度等级:用立方体抗压标准试验测得的具有95%保证率的立方体抗压强度。(150mm的立方体)高强混凝土:C50~C80影响混凝土抗压强度的4个因素:一、试验方法:接触面摩擦力的影响二、加载速度:裂缝未发展完全三、龄期:28d四、尺寸大小轴心抗压强度:150*150*300ftfcfckfcuk(材料抗压强度,设计值小于标准值)双向应力状态(变化规律):第一象限(双向受拉):接近单向受拉。第二、四象限(一边受拉,一边受压):强度均低于单向受拉和受压的状态。第三象限(双向受压):互相增强。剪应力存在对于抗压抗拉强度的影响:都降低。混凝土的变形(一)短期加载一、单轴受压时的应力-应变关系注意5个点:比例极限点(弹性阶段)、临界点B(第二阶段,长期抗压强度依据)、峰点C(第三阶段,不稳定阶段,混凝土棱柱体抗压强度试验值Fc=0.002,峰值应变)、拐点D(裂缝迅速发展)、收敛点E(破坏阶段=0.0033,极限应变)通过应力应变曲线得出的一个结论:混凝土的强度越大,延性越差。二、混凝土的变形模量:1.混凝土的弹性模量(即原点模量)Ec:过原点做应力-应变曲线的切线,其斜率。重复加载2.混凝土的变形模量(即割线模量或弹塑性模量)E’c:从原点到任意一点的应力的割线的斜率;【E’c=vEc,v受破坏为0.1~1.0,受拉破坏为1.0】3.切线模量:任意一点做切线的斜率【随着混凝土应力的增大而减小】(二)荷载长期作用1.徐变的定义:应力不变,应变随时间增长的现象。2.线性徐变:应力<0.5fc;非线性徐变:应力大于0.5fc一般取0.75fc~0.8fc作为混凝土的长期极限强度。3.影响徐变得因素:①加载时混凝土的龄期越早,徐变越大。②水泥用量越多,水灰比越大,徐变越大。③骨料越坚硬,弹性模量越高,徐变越小。34.徐变产生的原因:一是凝胶体具有黏性流动的性质,在加载的瞬间结晶体与凝胶体共同承受荷载。二是混凝土内部微裂缝在荷载长期作用下不断发展和增加。5.徐变对结构的影响:使构件的变形增加,引起应力重分布;在预应力结构造成预应力损失。混凝土的疲劳破坏定义:混凝土在重复荷载作用下的破坏。钢筋的物理力学性能:钢筋符号,热轧钢筋。(硬钢、软钢)钢筋的强度-流幅:屈服平台。有明显流幅的热轧钢筋屈服强度是按屈服下限确定的。有明显流幅的钢筋,在计算承载力时以屈服点作为钢筋强度极限。无明显流幅的钢筋,取残余应变0.2%所对应的应力作为屈服强度标准值。钢筋的塑性:伸长率和冷弯性能伸长率:钢筋拉断后的伸长值与原长的比率冷弯:将直径为d的钢筋绕直径为D的弯芯弯曲到规定的角度后,无裂纹断裂及起层现象。弯芯D越小,弯转角越大,钢筋塑性越好。钢筋的疲劳:钢筋在承受重复、周期性的动荷载作用下,经过一定次数后,忽然脆性断裂的现象。混凝土结构对钢筋性能的要求:1.钢筋的强度2.钢筋的延性3.钢筋的可焊性4.机械连接性能5施工适应性6.钢筋与混凝土的粘结力粘结应力分为裂缝间的局部粘结应力和钢筋端部的锚固粘结应力两种。钢筋与混凝土的粘结作用:(1)钢筋与混凝土接触面上的胶结力(光圆)(2)混凝土收缩握裹钢筋而产生摩阻力(光圆)(3)钢筋表面凹凸不平与混凝土之间产生的机械咬合力(肋纹)。(主要)钢筋的锚固:Lab=αfy/ft·d(P32)影响锚固的因素第三章受弯构件正截面受弯承载力(梁、板)纵向受拉钢筋的配筋率:纵向受拉钢筋的纵截面面积As与正截面有效面积bh0的比值。(百分数计量)Ρ=As/bh04混凝土保护层厚度:定义:从最外层钢筋的外表面到截面边缘的垂直距离。作用:1)防止纵向钢筋锈蚀;2)防火,使钢筋温度上升缓慢;3)使纵向钢筋与混凝土有较好的粘结。适筋梁破坏的三个阶段的特征及可作为什么的依据:第一阶段(未裂阶段):1)混凝土没有开裂;2)受压区混凝土应力图为直线,受拉区在第一阶段前期是直线,后期为曲线;3)弯矩与截面曲率基本上是直线关系。*可作为受弯构件抗裂度的计算依据。第二阶段(开裂后至钢筋屈服前):1)受拉区混凝土大部分退出工作,拉力大部分由钢筋承担,钢筋未屈服;2)受压区混凝土有塑性变形,应力图形只有上升段曲线;3)弯矩与截面曲率是曲线关系,截面曲率与挠度增长加快。*可作为正常使用阶段验算变形和裂缝开展宽度的依据。第三阶段(钢筋屈服至截面破坏):1)纵向受拉钢筋屈服,混凝土退出工作;2)受压区混凝土合压力作用点外移,使内力臂增大,故弯矩还略有增加。3)受压区边缘混凝土压应变达到其极限压应变,混凝土被压碎;4)弯矩-曲率接近水平的曲线。*可作为正截面受弯承载力计算的依据。适筋梁破坏特征:受拉钢筋先屈服,压区混凝土被压碎。超筋破坏:受压区混凝土先碎,钢筋不屈服。少筋破坏:受拉区混凝土一开裂就坏。界限破坏也属于适筋破坏。可用等效矩形应力图来代替理论图,须满足两个等效条件:1)混凝土压应力的合力大小相等;2)混凝土压应力合力作用点位置不变。如何推导界限相对受压区高度P51双筋矩形截面的适用情况:1)弯矩很大,按单筋矩形计算大于最大配筋率,而梁截面尺寸限制,混凝土强度等级又不能提高时;2)在不同荷载组合情况下,梁截面承受弯矩异号。T形截面梁不适用的情况:1)翼缘在梁的受拉区;2)承受负弯矩(受拉)如何区分T形截面梁的两种类型:(1)中和轴在翼缘内,即x≤hf’,(2)中和轴在梁肋内,即x≥hf’(hf’是T形梁的翼缘高度)5第四章受弯构件的斜截面承载力斜截面受剪承载力是由计算和构造来满足的;斜截面受弯承载力则是通过对纵向钢筋和箍筋的构造要求来保证。腹筋:箍筋、弯起钢筋(斜筋)实验研究表明,箍筋对抑制斜裂缝开展的效果比弯起钢筋要好,所以在工程设计中,应优先使用箍筋。腹剪斜裂缝:沿主压应力迹线产生的腹部的斜裂缝。弯剪斜裂缝:由竖向裂缝发展而成的斜裂缝。剪跨比概念:λ=a/ho,a=最外侧集中力到支座的距离。(重要)广义剪跨比:λ=M/Vho承受集中荷载的简支梁,以上两者相等。剪跨比的物理意义:1)反映了截面上正应力和剪应力的相对比值;2)反映了截面上弯矩与剪力的相对比值;3)对于无腹筋梁有决定性的影响;4)斜截面的受剪承载力也有极为重要的影响。斜截面受剪破坏的三种主要形态:1.无腹筋梁(1)斜压破坏:λ1时,取决于抗压强度。破坏时,混凝土被腹剪斜裂缝分割成若干个斜向短柱而破坏。(2)剪压破坏:1≤λ≤3,剪弯区先产生竖向裂缝,后斜向延伸,成为一条贯穿的较宽的主要斜裂缝,成为临界斜裂缝。(3)斜拉破坏:λ3,竖向裂缝一出现,就迅速向受压区斜向延伸。以上三种形式都属于脆性破坏,其中脆性由大到小排列是斜拉破坏、斜压破坏、剪压破坏,受剪承载力由大到小是斜压破坏、剪压破坏、斜拉破坏。2.有腹筋梁的斜截面受剪破坏形态斜截面受剪承载力的主要影响因素:1.剪跨比2.混凝土强度3.箍筋的配筋率定义:沿梁长,在箍筋一个间距范围内,箍筋各肢的全部截面面积与混凝土水平截面面积的比值。Ρsv=Asv/bs=nAsv1/bs64.纵筋配筋率5.斜截面上的骨料咬合力6.截面尺寸和形状防止斜截面破坏的方法,即计算公式的适用范围(防止斜压和斜拉破坏)(P87)材料抵抗图Mu(P99)对于斜压破坏通常用控制截面的最小尺寸来防止;斜拉,最小配筋率及构造要求;剪压,计算。P87受剪计算。弯起点距离“按计算充分利用该钢筋截面”的长度不小于0.5ho纵筋的截断:受拉钢筋不宜截断。满足两个控制条件:(1)从该钢筋充分利用截面到截断点的长度。称为“伸出长度”,为了可靠锚固,纵筋截断必须满足“伸出长度”的要求。(2)从不需要该钢筋的截面到截断点的长度,称为“延伸长度”,为了保证斜截面受弯承载力,负钢筋截断时还必须满足延伸长度要求。架立钢筋及纵向构造钢筋1.纵向构造钢筋又称腰筋,为了抑制梁腹板高度范围内,由荷载作用或混凝土收缩引起的垂直裂缝的开展。第五章受压构件的截面承载力二阶效应的影响、徐变的影响(很重要)徐变的影响:在荷载忽然卸载时,构件回弹,由于混凝土徐变变形大部分不能恢复,故当荷载为0时,会使柱中钢筋受压而混凝土受拉;若配筋率过大,还可能将混凝土拉裂,若柱中纵筋和混凝土之间的粘结应力很大时,则能同时产生纵向裂缝。为了防止出现这种情况,故要控制柱中纵筋的配筋率,要求全部纵筋配筋率不宜超过5%。全部纵向钢筋的配筋率不宜大于5%,一侧纵筋的配筋率不应小于0.2%。长细比很大的细长柱,还可能发生失稳破坏。长细比的概念:构件的计算长度lo与其截面的回转半径i之比;对于矩形截面,为lo/b.稳定系数=长柱承载力/短柱承载力承载力计算公式:Nu=0.9fai(~~~~)螺旋箍筋柱:在柱的横向采用螺旋箍筋或焊接环筋也能像直接配置纵向钢筋那样起到提高承载力和变形能力的作用,“间接配筋”。7适用条件:(1)当lo/d12时,此时因长细比较大,有可能因纵筋的弯曲使得螺旋筋不起作用;(2)当按式~~~小于(3)当间接钢筋换算截面面积Asso小于纵筋全部截面面积的25%,可以认为间接钢筋配的太少,约束混凝土的效果不明显。偏心受压构件:(一)界限破坏:在受拉破坏状态和受压破坏之间,特征是:在手拉钢筋的达到屈服强度的同时,受压区边缘的混凝土被压碎。界限破坏也属于受拉破坏形态。(二)(什么是二阶效应,什么情况下不考虑这两种效应)二阶效应的定义:轴向压力对偏心受压构件的侧移(大)和挠曲(小)产生附加弯矩和附加曲率的荷载效应,成为偏心受压构件的二阶效应。当杆端弯矩异号时,不考虑二阶效应。(三)考虑P-~二阶效应的前提:(四)大偏压和小偏压的区别,各自的破坏特征(1)大偏压:轴向压力偏心距相对较大,受拉钢筋配置的不太多。特点:受拉钢筋先达到屈服强度,最终导致受压区边缘混凝土压碎截面破坏。属于延性破坏。(2)小偏压:①N的相对偏心距较小,全截面或大部分受压。②轴向力N虽然偏心距较大,但是受拉钢筋配置的特别多。特点:混凝土先被压碎,远侧钢筋可能受拉也可能受压,受拉时不屈服,受压时可能屈服也可能不屈服,属于脆性破坏。计算题主要掌握大偏压破坏、双筋配筋Nu-Mu相关曲线的特种(ppt):M的存在总是不利的,N在大偏心有利,在小偏心不利。【ppt有例题】压力对承载能力的提高:压力对侧向建立的抗力起有利作用。N0.3fcA时,取N=0.3fcA;(过大会产生裂缝)第六章受拉构件的截面承载力大偏心受拉:拉力作用在As合力点及As’合力点以外时,截面虽开裂,但还有受压区,截面不会通裂。小偏心受拉:拉力完全由钢筋承担,产生通裂。(轴心受拉和小偏心混凝土都退出了工作,ppt)第十章混凝土结构设计的一般原则和方法8直接作用:仅与外部因素有关,与结构本身的力学特性无关,如:各种荷载(重力、风力)作用间接作用:不仅与外部因素有关,还与结构本身的力学特性有关,如:地震、徐变、;收缩、温度变化、沉降、侵蚀、冻融等。荷载分类:a.永久荷载:不随时间变化、与平均值相比可忽略、变化单调且趋
本文标题:重庆大学混凝土基本原理复习提纲(原创归纳)
链接地址:https://www.777doc.com/doc-4560185 .html