您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 最新中考数学复习专题特殊平行四边形
第1页(共30页)2017---2018学年中考数学复习专题--《特殊平行四边形》评卷人得分一.选择题(共12小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补2.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角3.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分D.对角线相等4.以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BDD.AB=CD,AB∥CD,OA=OC,OB=OD5.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC和BD只需满足的条件是()A.相等B.互相垂直C.相等且互相垂直D.相等且互相平分6.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cmB.10cmC.7cmD.5cm7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()第2页(共30页)A.16B.15C.14D.138.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,若AB=2,BC=3,则EF:GH=()A.2:3B.3:2C.4:9D.无法确定9.如图:点P是Rt△ABC斜边AB上的一点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,则线段EF的最小值为()A.12B.6C.12.5D.2510.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°11.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()第3页(共30页)A.55°B.50°C.45°D.35°12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1B.2C.3D.4评卷人得分二.填空题(共6小题)13.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱第4页(共30页)形ABCD的面积为.15.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是.16.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是.17.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2=.18.如图所示,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD于F,则PE+PF的值为.第5页(共30页)评卷人得分三.解答题(共6小题)19.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE交AC于点O.(1)证明:四边形ADCE为菱形.(2)BC=6,AB=10,求菱形ADCE的面积.20.已知,如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.第6页(共30页)22.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.23.如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.24.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;第7页(共30页)(3)若AG=13,CF=6,求四边形BDFG的周长.第8页(共30页)2017---2018学年中考数学复习专题--《特殊平行四边形》参考答案与试题解析一.选择题(共12小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选C.2.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角【解答】解:∵对角线互相垂直平分的四边形是菱形.∴A、B、D都不正确.∵对角相等的四边形是平行四边形,而对角线互相垂直的平行四边形是菱形.故C正确.故选C.3.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分D.对角线相等【解答】解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且第9页(共30页)都是直角,③矩形的对角线互相平分、相等;菱形的性质有:①菱形的四条边都相等,且对边平行,②菱形的对角相等,③菱形的对角线互相平分、垂直,且每一条对角线平分一组对角;∴矩形具有而菱形不一定具有的性质是对角线相等,故选D.4.以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BDD.AB=CD,AB∥CD,OA=OC,OB=OD【解答】解:如图:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴四边形ABCD是矩形,故本选项错误;B、∵OA=OB=OC=OD,∴AC=BD,∴四边形ABCD是平行四边形,∴四边形ABCD是矩形,故本选项错误;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项错误;D、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,根据OA=OC,OB=OD不能推出平行四边形ABCD是矩形,故本选项正确;故选D.第10页(共30页)5.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC和BD只需满足的条件是()A.相等B.互相垂直C.相等且互相垂直D.相等且互相平分【解答】解:因为原四边形的对角线与连接各边中点得到的四边形的关系:①原四边形对角线相等,所得的四边形是菱形;②原四边形对角线互相垂直,所得的四边形是矩形;③原四边形对角线既相等又垂直,所得的四边形是正方形;④原四边形对角线既不相等又不垂直,所得的四边形是平行四边形.因为顺次连接四边形ABCD各边中点所成的四边形为菱形,所以四边形ABCD的对角线AC和BD相等.故选A.6.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cmB.10cmC.7cmD.5cm【解答】解:如图:∵菱形ABCD中BD=8cm,AC=6cm,∴OD=BD=4cm,OA=AC=3cm,在直角三角形AOD中AD===5cm.故选D.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()第11页(共30页)A.16B.15C.14D.13【解答】解:连结EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理得:OA===8,∴AE=2OA=16.故选:A.8.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,若AB=2,BC=3,则EF:GH=()第12页(共30页)A.2:3B.3:2C.4:9D.无法确定【解答】解:过F作FM⊥AB于M,过H作HN⊥BC于N,则∠4=∠5=90°=∠AMF∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠A=∠D=90°=∠AMF,∴四边形AMFD是矩形,∴FM∥AD,FM=AD=BC=3,同理HN=AB=2,HN∥AB,∴∠1=∠2,∵HG⊥EF,∴∠HOE=90°,∴∠1+∠GHN=90°,∵∠3+∠GHN=90°,∴∠1=∠3=∠2,即∠2=∠3,∠4=∠5,∴△FME∽△HNG,∴==∴EF:GH=AD:CD=3:2.故选B.9.如图:点P是Rt△ABC斜边AB上的一点,PE⊥AC于E,PF⊥BC于F,BC=15,第13页(共30页)AC=20,则线段EF的最小值为()A.12B.6C.12.5D.25【解答】解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB===25,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CP,即×20×15=×25•CP,解得CP=12.故选A.10.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()第14页(共30页)A.80°B.70°C.65°D.60°【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.11.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.55°B.50°C.45°D.35°【解答】解:延长PF交AB的延长线于点G.如图所示:第15页(共30页)在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG,∵PF=PG,∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴
本文标题:最新中考数学复习专题特殊平行四边形
链接地址:https://www.777doc.com/doc-4570528 .html