您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > HISTORY OF HOMOLOGICAL ALGEBRA
HISTORYOFHOMOLOGICALALGEBRACharlesA.WeibelHomologicalalgebrahaditsoriginsinthe19thcentury,viatheworkofRiemann(1857)andBetti(1871)on\homologynumbers,andtherigorousdevelopmentofthenotionofhomologynumbersbyPoincar ein1895.A1925observationofEmmyNoether[N25]shiftedtheattentiontothe\homologygroupsofaspace,andalgebraictechniquesweredevelopedforcomputationalpurposesinthe1930’s.Yethomologyremainedapartoftherealmoftopologyuntilabout1945.Duringtheperiod1940-1955,thesetopologically-motivatedtechniquesforcom-putinghomologywereappliedtode neandexplorethehomologyandcohomologyofseveralalgebraicsystems:TorandExtforabeliangroups,homologyandcoho-mologyofgroupsandLiealgebras,andthecohomologyofassociativealgebras.Inaddition,Lerayintroducedsheaves,sheafcohomologyandspectralsequences.AtthispointCartanandEilenberg’sbook[CE]crystallizedandredirectedthe eldcompletely.Theirsystematicuseofderivedfunctors,de nedviaprojectiveandinjectiveresolutionsofmodules,unitedallthepreviouslydisparatehomologytheories.Itwasatruerevolutioninmathematics,andassuchitwasalsoanewbeginning.Thesearchforageneralsettingforderivedfunctorsledtothenotionofabeliancategories,andthesearchfornontrivialexamplesofprojectivemodulesledtotheriseofalgebraicK-theory.Homologicalalgebrawasheretostay.Severalnew eldsofstudygrewoutoftheCartan-EilenbergRevolution.Theimportanceofregularlocalringsinalgebragrewoutofresultsobtainedbyho-mologicalmethodsinthelate1950’s.ThestudyofinjectiveresolutionsledtoGrothendieck’stheoryofsheafcohomology,thediscoveryofGorensteinringsandLocalDualityinbothringtheoryandalgebraicgeometry.Inturn,cohomologicalmethodsplayedakeyroleinGrothendieck’srewritingofthefoundationsofalge-braicgeometry,includingthedevelopmentofderivedcategories.NumbertheorywasinfusedwithnewresultsfromGaloiscohomology,whichinturnledtothedevelopmentof etalecohomologyandtheeventualsolutionoftheWeilConjecturesbyDeligne.Simplicialmethodswereintroducedinthe1950’sbyKan,DoldandPuppe.Theyledtotheriseofhomotopicalalgebraandnonabelianderivedfunctorsinthe1960’s.Amongitsmanyapplications,perhapsAndr e-Quillenhomologyforcom-mutativeringsandhigheralgebraicK-theoryarethemostnoteworthy.SimplicialmethodsalsoplayedamorerecentroleinthedevelopmentofHochschildhomology,topologicalHochschildhomologyandcyclichomology.Thiscompletesaquickoverviewofthehistoryweshalldiscussinthisarticle.Nowletusturntothebeginningsofthesubject.TypesetbyAMS-TEX12CHARLESA.WEIBELBettinumbers,TorsionCoefficientsandtheriseofHomologyHomologicalalgebrainthe19thcenturylargelyconsistedofagraduale orttode nethe\Bettinumbersofa(piecewiselinear)manifold.BeginningwithRie-mann’snotionofgenus,weseethegradualdevelopmentofnumericalinvariantsbyRiemann,BettiandPoincar e:theBettinumbersandTorsioncoe cientsofatopologicalspace.Indeed,thesubjectdidnotreallymovebeyondthesenumeri-calinvariantsuntilabout1930.Anditwasnotconcernedwithanythingexceptinvariantsoftopologicalspacesuntilabout1945.RiemannandBetti.The rststepwastakenbyRiemann(1826{1866)inhisgreat1857work\TheoriederAbel’schenFunktionen[Riem,VI].LetCbeasystemofoneormoreclosedcurvesCjonasurfaceS,andconsiderthecontourintegralRCXdx+Ydyofanexactdi erentialform.RiemannremarkedthatthisintegralvanishedifCformedthecompleteboundaryofaregioninS(Stokes’Theorem),andthisledhimtoadiscussionof\connectednessnumbers.Riemannde nedStobe(n+1)-foldconnectedifthereexistsafamilyCofnclosedcurvesCjonSsuchthatnosubsetofCformsthecompleteboundaryofapartofS,andCismaximalwiththisproperty.Forexample,Sis\simplyconnected(inthemodernsense)ifitis1-foldconnected.Asweshallsee,theconnectnessnumberofSisthehomologyinvariant1+dimH1(S;Z=2).RiemannshowedthattheconnectednessnumberofSwasindependentofthechoiceofmaximalfamilyC.Thekeytohisassertionisthefollowingresult,whichisoftencalled\Riemann’sLemma[Riem,p.85]:SupposethatA,BandCarethreefamiliesofcurvesonSsuchthatAandBformthecompleteboundaryofoneregionofS,andAandCformthecompleteboundaryofasecondregionofS.ThenBandCtogethermustalsoformtheboundaryofathirdregion,obtainedasthesymmetricdi erenceoftheothertworegions(obtainedbyaddingtheregionstogether,andthensubtractinganypartwheretheyoverlap).IfwewriteC 0toindicatethatCisaboundaryofaregionthenRiemann’sLemmasaysthatifA+B 0andA+C 0thenB+C 0.This,inmodernterms,isthede nitionofadditioninmod2homology!Indeed,theCjinamaximalsystemformabasisofthesingularhomologygroupH1(S;Z=2).Riemannwassomewhatvagueaboutwhathemeantby\closedcurveand\sur-face,butwemustrememberthatthispaperwaswrittenbeforeM obiusdiscoveredthe\M obiussurface(1858)orPeanostudiedpathologicalcurves(1890).ThereisanotherambiguityinthisLemma,pointedoutbyTonelliin1875:everycurveCjmustbeusedexactlyonce.Riemannalsoconsideredthee ectofmakingcuts(Querschnitte)inS.BymakingeachcutqjtransversetoacurveCj(see[Riem,p.89]),heshowedthatthenumberofcutsneededtomakeSsimplyconnectedequalstheconnectivitynumber.ForacompactRiemannsurface,heshows[Riem,p.97]thatoneneedsanevennumber2pofcuts.Inmodernlanguage,pisthegenusofS,andtheinteractionbetweenthecurvesCjandcutsqjformsthegermofPoincar eDualityforH1(S;Z=2).Riemannhadpoorhealth
本文标题:HISTORY OF HOMOLOGICAL ALGEBRA
链接地址:https://www.777doc.com/doc-4580384 .html