您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 六年级奥数-第十讲数论之余数问题教师版
第十讲:数论之余数问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。这里:(1)当0r时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当0r时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b(modm),左边的式子叫做同余式。同余式读作:a同余于b,模m。由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b(modm),那么一定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理:在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式12341898189226789671789028899231234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”。所以我们总结出弃九发原理:任何一个整数模9同余于它的各数位上数字之和。以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确。例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律。这个思想往往可以帮助我们解决一些较复杂的算式迷问题。四、中国剩余定理:1.中国古代趣题:中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(ChineseRemainderTheorem)在近代抽象代数学中占有一席非常重要的地位。2.核心思想和方法:对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。先由5735,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和7的“下一个”倍数35270是否可以,很显然70除以3余1类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所求的自然数可以这样计算:270321245[3,5,7]233[3,5,7]kk,其中k是从1开始的自然数。也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。例如对上面的问题加上限制条件“满足上面条件最小的自然数”,那么我们可以计算2703212452[3,5,7]23得到所求如果加上限制条件“满足上面条件最小的三位自然数”,我们只要对最小的23加上[3,5,7]即可,即23+105=128。例题精讲:【模块一:带余除法的定义和性质】【例1】(第五届小学数学报竞赛决赛)用某自然数a去除1992,得到商是46,余数是r,求a和r.【【解解析析】】因为1992是a的46倍还多r,得到19924643......14,得1992464314,所以43a,14r.【【巩巩固固】】(清华附中小升初分班考试)甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.【【解解析析】】(法1)因为甲乙1132,所以甲乙乙1132乙乙12321088;则乙(108832)1288,甲1088乙1000.(法2)将余数先去掉变成整除性问题,利用倍数关系来做:从1088中减掉32以后,1056就应当是乙数的(111)倍,所以得到乙数10561288,甲数1088881000.【【巩巩固固】】一个两位数除310,余数是37,求这样的两位数。【【解解析析】】本题为余数问题的基础题型,需要学生明白一个重要知识点,就是把余数问题---即“不整除问题”转化为整除问题。方法为用被除数减去余数,即得到一个除数的倍数;或者是用被除数加上一个“除数与余数的差”,也可以得到一个除数的倍数。本题中310-37=273,说明273是所求余数的倍数,而273=3×7×13,所求的两位数约数还要满足比37大,符合条件的有39,91.【例2】(2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【【解解析析】】被除数除数商余数被除数除数+17+13=2113,所以被除数除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.【【巩巩固固】】用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?【【解解析析】】本题为带余除法定义式的基本题型。根据题意设两个自然数分别为x,y,可以得到40164016933xyxy,解方程组得85621xy,即这两个自然数分别是856,21.【例3】(2000年“祖冲之杯”小学数学邀请赛试题)三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______。【【解解析析】】设所得的商为a,除数为b.(19)(23)(31)2001ababab,7332001ab,由19b,可求得27a,10b.所以,这三个数分别是19523ab,23631ab,31847ab。【【巩巩固固】】(2004年福州市“迎春杯”小学数学竞赛试题)一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________.【【解解析析】】设这个自然数除以11余a(011)a,除以9余b(09)b,则有1193aabb,即37ab,只有7a,3b,所以这个自然数为84712。【例4】(1997年我爱数学少年数学夏令营试题)有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人?【【解解析析】】由48412,4859.6知,一组是10或11人.同理可知48316,48412知,二组是13、14或15人,因为二组比一组多5人,所以二组只能是15人,一组10人.【【巩巩固固】】一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【【解解析析】】因为一个两位数除以13的商是6,所以这个两位数一定大于13678,并且小于13(61)91;又因为这个两位数除以11余6,而78除以11余1,这个两位数为78583.【模块二:三大余数定理的应用】【例5】有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【解析】这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556,594514,(56,14)14,14的约数有1,2,7,14,所以这个数可能为2,7,14。【【巩巩固固】】有一个整数,除39,51,147所得的余数都是3,求这个数.【解析】(法1)39336,1473144,(36,144)12,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912,14739108,(12,108)12,所以这个数是4,6,12.【【巩巩固固】】在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【解析】我们知道18,33的最小
本文标题:六年级奥数-第十讲数论之余数问题教师版
链接地址:https://www.777doc.com/doc-4583043 .html