您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 一、曲线的参数方程1
在过去的学习中我们已经掌握了一些求曲线方程的方法,在求某些曲线方程时,直接确定曲线上的点的坐标x,y的关系并不容易,但如果利用某个参数作为联系它们的桥梁,那么就可以方便地得出坐标x,y所要适合的条件,即参数可以帮助我们得出曲线的方程f(x,y)=0。下面我们就来研究求曲线参数方程的问题。一、曲线的参数方程1、参数方程的概念1、参数方程的概念探究:一架救援飞机在离灾区地面500m的高处以100m/s的速度作水平直线飞行,为使投放的救援物资准确落于灾区指定的地面(不计空气阻力),飞行员应如何确定投放时机呢?AM(x,y)xyo飞机在A点将物资投出机舱,在经过飞行航线(直线)且垂直与地面的平面上建立平面直角坐标系,其中x轴为地平面与这个平面的郊交线,y轴经过A点。记物资投出机舱时为时刻0,在时刻t时物资的位置为点M(x,y),则x表示物资的水平位置,y表示物资距地面的高度。由于水平位移量x与高度y是由两种不同的运动得到的,因此直接建立x,y所要满足的关系式并不容易。换个角度看这个问题。由物理知识,物资投出机舱后,它的运动由下列两种运动合成:(1)沿ox作初速为100m/x的匀速直线运动;(2)沿oy反方向作自由落体运动。txy解:物资出舱后,设在时刻,水平位移为,垂直高度为,所以2100,)1500.2xtygt2(g=9.8m/s一、方程组有3个变量,其中的x,y表示点的坐标,变量t叫做参变量,而且x,y分别是t的函数。二、由物理知识可知,物体的位置由时间t唯一决定,从数学角度看,这就是点M的坐标x,y由t唯一确定,这样当t在允许值范围内连续变化时,x,y的值也随之连续地变化,于是就可以连续地描绘出点的轨迹。三、平抛物体运动轨迹上的点与满足方程组的有序实数对(x,y)之间有一一对应关系。一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数并且对于t的每一个允许值,由方程组(2)所确定的点M(x,y)都在这条曲线上,那么方程(2)就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。)2.....(....................)()({tgytfx的值。上,求在曲线、已知点的位置关系与曲线、判断点为参数的参数方程、已知曲线例aCaMCMMttytxC),6()2()4,5(),1,0()1()(123{13212上。不在曲线点这个方程组无解,所以代入方程组,得到把点上。在曲线所以代入方程组,解得的坐标把点解:CMttMCMtM2221112435{)4,5(0)1,0()1(99,21236{),6()2(23aattatCaM所以,解得上,所以在曲线、因为点请用自己的语言来比较一下参数方程与普通方程的异同点2、圆的参数方程xo0MyM(x,y)0M圆周运动是生产生活中常见的。当物体绕定轴做匀速转动时,物体中各个点都做匀速圆周运动,那么怎样刻画运动中点的位置呢?设圆O的半径为r,点M从初始位置出发,按逆时针方向在圆O上做匀速圆周运动,点M绕点O转动的角速度为ω。以圆心O为原点,所在直线为x轴,建立直角坐标系。显然,点M的位置由时刻t惟一确定,因此可取t为参数。r0OM)()(sincos{sin,cos),(速圆周运动的时刻质点作匀有明确的物理意义程。其中参数的圆的参数方,半径为这就是圆心在原点为参数即角函数的定义有:,那么由三=,设=,那么,坐标是转过的角度是,点如果在时刻trOttrytrxrytrxtrOMtyxMMt转过的角度。的位置时,到逆时针旋转绕点的几何意义是其中参数的圆的参数方程,半径为这也是圆心在原点为参数为参数,于是有,也可以取=考虑到00)(sincos{OMOMOOMrOryrxt圆的参数方程的一般形式么样的呢?的圆的参数方程又是怎半径为那么,圆心在点普通方程是的参数方程,它对应的以上是圆心在原点的圆ryxoryx),(,002222220000cos{()s()()inxxyxxryyyrr对应的普通方程为为参数由于选取的参数不同,圆有不同的参数方程,一般地,同一条曲线,可以选取不同的变数为参数,因此得到的参数方程也可以有不同的形式,形式不同的参数方程,它们表示的曲线可以是相同的,另外,在建立曲线的参数参数时,要注明参数及参数的取值范围。练习1已知圆方程x2+y2+2x-6y+9=0,将它化为参数方程。解:x2+y2+2x-6y+9=0化为标准方程,(x+1)2+(y-3)2=1,∴参数方程为sin3cos1yx(θ为参数)例2如图,圆O的半径为2,P是圆上的动点,Q(6,0)是x轴上的定点,M是PQ的中点,当点P绕O作匀速圆周运动时,求点M的轨迹的参数方程。yoxPMQ(6,0)oxPMQ(6,0))(sin3cos{sin2sin2,3cos26cos2),sin2,cos2(,),(为参数的轨迹的参数方程是所以,点由中点坐标公式得:的坐标是则点,的坐标是解:设点yxMyxPxOPyxM分析:取为参数,则圆O的参数方程是(θ为参数),当θ变化是,动点P在定圆O上运动,线段PQ也随之变动,从而使点M远动,因此点M的运动可以看成是由角θ决定的。于是,选θ为参数是适合的。xOPsin2cos2yx思考:这里定点Q在圆O上外,你能判断这个轨迹表示什么曲线呢?如果定点Q在圆O上,轨迹是什么?如果定点Q在圆O内,轨迹又是什么?径,并化为普通方程。表示圆的圆心坐标、半所为参数、指出参数方程)(sin235cos2{2yx4)3()5(22yx练习_____________4)0(sin2cos{3,则圆心坐标是是的直径为参数,、圆rrryrrx(2,1)3、参数方程和普通方程的互化cos3,()sinxMy由参数方程为参数直接判断点的轨迹的曲线类型并不容易,但如果将参数方程转化为熟悉的普通方程,则比较简单。2222cos3,sincos(3)1sinxxyyM由参数方程得:所以点的轨迹是圆心在(3,0),半径为1的圆。将曲线的参数方程化为普通方程,有利于识别曲线的类型。曲线的参数方程和普通方程是曲线方程的不同形式。一般地,可以通过消去参数而从参数方程得到普通方程。如果知道变数x,y中的一个与参数t的关系,例如,把它代入普通方程,求出另一个变数与参数的关系那么就是曲线的参数方程。tfxtgytgytfx参数方程和普通方程的互化:(1)普通方程化为参数方程需要引入参数如:①直线L的普通方程是2x-y+2=0,可以化为参数方程.22,tytx(t为参数)②在普通方程xy=1中,令x=tan,可以化为参数方程.cot,tanyx(为参数)(2)参数方程通过代入消元或加减消元消去参数化为普通方程如:①参数方程.sin,cosrbyrax消去参数可得圆的普通方程(x-a)2+(y-b)2=r2..42,tytx②参数方程(t为参数)可得普通方程:y=2x-4通过代入消元法消去参数t,(x≥0)注意:在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致。否则,互化就是不等价的.例3、把下列参数方程化为普通方程,并说明它们各表示什么曲线?1()12tytx=t(1)为参数sincos().1sin2yx=(2)为参数(2)把平方后减去得到因为所以因此,与参数方程等价的普通方程是这是抛物线的一部分。(1)11231)11xtyx解:因为所以普通方程是(x这是以(,)为端点的一条射线(包括端点)1xt所以代入ty21cossinxsin21yyx24sin2cossinx2,2x2,2xyx2练习、1.将下列参数方程化为普通方程:sin3cos32yx(1)2cossinyx(2)(3)x=t+1/ty=t2+1/t2(1)(x-2)2+y2=9(2)y=1-2x2(-1≤x≤1)(3)x2-y=2(X≥2或x≤-2)步骤:(1)消参;(2)求定义域。2.求参数方程)20()sin1(21|,2sin2cos|yx表示()(A)双曲线的一支,这支过点(1,21):(B)抛物线的一部分,这部分过(211,);(C)双曲线的一支,这支过点(–1,21);(D)抛物线的一部分,这部分过(–1,21)分析一般思路是:化参数方程为普通方程求出范围、判断。解∵x2=2)2sin2(cos=1+sin=2y,普通方程是x2=2y,为抛物线。)42sin(2|2sin2cos|x∵,又02,0x2,故应选(B)说明这里切不可轻易去绝对值讨论,平方法是最好的方法。例4(1)设x=3cos,为参数;2.tt(2)设y=,为参数22194xy求椭圆的参数方程。解(1)把带入椭圆方程,得到于是由参数的任意性,可取因此椭圆的参数方程为(为参数)1499cos22y3cosxsin2sin4cos14222yysin2y,sin2cos3yx思考:为什么(2)中的两个参数方程合起来才是椭圆的参数方程?2222213,191449txtxtx因此椭圆的参数方程为,2132tytxtytx2132(t为参数)和(2)把ty2代入椭圆方程,得x,y范围与y=x2中x,y的范围相同,2tytx代入y=x2后满足该方程,从而D是曲线y=x2的一种参数方程.2224sinABCDsinxtxtxtxtytytytyt、、、、曲线y=x2的一种参数方程是().注意:在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致。否则,互化就是不等价的.在y=x2中,x∈R,y≥0,分析:发生了变化,因而与y=x2不等价;在A、B、C中,x,y的范围都而在D中,且以练习:普通方程参数方程引入参数消去参数小结
本文标题:一、曲线的参数方程1
链接地址:https://www.777doc.com/doc-4589261 .html