您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 0302反射原理在组合计数中的应用-李书超
李书超 邓江(, 430074) (, 442000):O12-44 :A :0488-7395(2003)03-0034-02:2002-11-08:(1973—),,,,,. ,,P,P′,PP′,,..Cmn,nmm.,.1 ,ma,n-mb.,,Cmn. n,n.nma,b,,,.nm,Cmn.,,.1 2n,,n,n,,,2n,?2n,.nnCn2n,.,,.,.?,,.:,1,1 1,2,…,2n2n,.O,,;,;,.,O,A(2n,0)(1).,nn,Cn2n,.x,;y=-1l,,,.l,1OC1C2A;l,1OC3A.,.34 20033,l,l.O,B(2n,-2),,n-1n+1,Cn-12n(1).:Cn2n-Cn-12n=(2n)!n!(n+1)!=1n+1Cn2n.,,..2 A(m,p)B(n,q),nm.ABn-m≥q-p,n-m=q-p(mod2)(1),ABCαn-m,α=(n-m)+(q-p)2. AB,x,y,x+y=n-m,x-y=q-p.x=(n-m)+(q-p)2=α,y=(n-m)-(q-p)2.x,y,(1).1,Cαn-m.3 ()ABl,CBl.AC,AB,ABlAC. ACl.,l,AB,l,AB.,ABl,,AC,,. ,,.J.L.F.Bertrand1887,.2 ,Mm,Nn,mn.,MN?2 2 M,N,(0,0),(m+n,m-n).2.,(0,0)x,(1,1),(1,1).2,(1,1)(m+n,m-n),xCm-1m+n-1.x,,x,(1,-1),.32,(1,1)xCmm+n-1,xCm-1m+n-1-Cmm+n-1=m-nm+nCmm+n.,.,,.[1]..,,1991.[2]P.R.Stanley,EnumerativeCombinatorics,Vol.I,Wadsworth&Brooks/Cole,Montherey,Califo-rnia,1986.3520033
本文标题:0302反射原理在组合计数中的应用-李书超
链接地址:https://www.777doc.com/doc-4594136 .html