您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 研究生课件 > 7高等数学课件(完整版)详细
设),(000yxP是xoy平面上的一个点,是某一正数,与点),(000yxP距离小于的点),(yxP的全体,称为点0P的邻域,记为),(0PU,(1)邻域0P),(0PU||0PPP.)()(|),(2020yyxxyx一、多元函数的概念(2)区域.)(的内点为则称,的某一邻域一个点.如果存在点是平面上的是平面上的一个点集,设EPEPUPPE.EE的内点属于EP.为开集则称的点都是内点,如果点集EE}41),{(221yxyxE例如,即为开集.的边界点.为),则称可以不属于,也本身可以属于的点(点也有不属于的点,于的任一个邻域内既有属如果点EPEEPEEPEP的边界.的边界点的全体称为EE是连通的.开集,则称且该折线上的点都属于连结起来,任何两点,都可用折线内是开集.如果对于设DDDD连通的开集称为区域或开区域.}.41|),{(22yxyx例如,xyo开区域连同它的边界一起称为闭区域.}.41|),{(22yxyx例如,xyo}0|),{(yxyx有界闭区域;无界开区域.xyo例如,则称为无界点集.为有界点集,否成立,则称对一切即,不超过间的距离与某一定点,使一切点如果存在正数对于点集EEPKAPKAPAEPKE}41|),{(22yxyx(3)聚点设E是平面上的一个点集,P是平面上的一个点,如果点P的任何一个邻域内总有无限多个点属于点集E,则称P为E的聚点.内点一定是聚点;说明:边界点可能是聚点;}10|),{(22yxyx例(0,0)既是边界点也是聚点.点集E的聚点可以属于E,也可以不属于E.}10|),{(22yxyx例如,(0,0)是聚点但不属于集合.}1|),{(22yxyx例如,边界上的点都是聚点也都属于集合.(4)n维空间设n为取定的一个自然数,我们称n元数组),,,(21nxxx的全体为n维空间,而每个n元数组),,,(21nxxx称为n维空间中的一个点,数ix称为该点的第i个坐标.n维空间的记号为说明:;nRn维空间中两点间距离公式),,,,(21nxxxP),,,,(21nyyyQ.)()()(||2222211nnxyxyxyPQn维空间中邻域、区域等概念nRPPPPPU,||),(00特殊地当时,便为数轴、平面、空间两点间的距离.3,2,1n内点、边界点、区域、聚点等概念也可定义.邻域:设两点为设D是平面上的一个点集,如果对于每个点DyxP),(,变量z按照一定的法则总有确定的值和它对应,则称z是变量yx,的二元函数,记为),(yxfz(或记为)(Pfz).(5)二元函数的定义当2n时,n元函数统称为多元函数.多元函数中同样有定义域、值域、自变量、因变量等概念.类似地可定义三元及三元以上函数.例1求的定义域.222)3arcsin(),(yxyxyxf解013222yxyx22242yxyx所求定义域为}.,42|),{(222yxyxyxD(6)二元函数的图形),(yxfz设函数),(yxfz的定义域为D,对于任意取定的DyxP),(,对应的函数值为),(yxfz,这样,以x为横坐标、y为纵坐标、z为竖坐标在空间就确定一点),,(zyxM,当x取遍D上一切点时,得一个空间点集}),(),,(|),,{(Dyxyxfzzyx,这个点集称为二元函数的图形.(如下页图)二元函数的图形通常是一张曲面.xyzoxyzsin例如,图形如右图.2222azyx例如,左图球面.}.),{(222ayxyxD222yxaz.222yxaz单值分支:定义1设函数),(yxfz的定义域为),(,000yxPD是其聚点,如果对于任意给定的正数,总存在正数,使得对于适合不等式20200)()(||0yyxxPP的一切点,都有|),(|Ayxf成立,则称A为函数),(yxfz当0xx,0yy时的极限,记为Ayxfyyxx),(lim00(或)0(),(Ayxf这里||0PP).二、多元函数的极限说明:(1)定义中的方式是任意的;0PP(2)二元函数的极限也叫二重极限);,(lim00yxfyyxx(3)二元函数的极限运算法则与一元函数类似.例2求证证01sin)(lim222200yxyxyx01sin)(2222yxyx22221sinyxyx22yx,0,当时,22)0()0(0yx01sin)(2222yxyx原结论成立.例3求极限.)sin(lim22200yxyxyx解22200)sin(limyxyxyx,)sin(lim2222200yxyxyxyxyx其中yxyxyx2200)sin(limuuusinlim0,1222yxyxx21,00x.0)sin(lim22200yxyxyxyxu2例4证明不存在.证26300limyxyxyx取,3kxy26300limyxyxyx6263303limxkxkxxkxyx,12kk其值随k的不同而变化,故极限不存在.不存在.观察26300limyxyxyx,263图形yxyxz播放(1)令),(yxP沿kxy趋向于),(000yxP,若极限值与k有关,则可断言极限不存在;(2)找两种不同趋近方式,使),(lim00yxfyyxx存在,但两者不相等,此时也可断言),(yxf在点),(000yxP处极限不存在.确定极限不存在的方法:定义2设n元函数)(Pf的定义域为点集0,PD是其聚点,如果对于任意给定的正数,总存在正数,使得对于适合不等式||00PP的一切点DP,都有|)(|APf成立,则称A为n元函数)(Pf当0PP时的极限,记为APfPP)(lim0.n元函数的极限利用点函数的形式有设n元函数)(Pf的定义域为点集0,PD是其聚点且DP0,如果)()(lim00PfPfPP则称n元函数)(Pf在点0P处连续.设0P是函数)(Pf的定义域的聚点,如果)(Pf在点0P处不连续,则称0P是函数)(Pf的间断点.三、多元函数的连续性定义3例5讨论函数)0,0(),(,0)0,0(),(,),(2233yxyxyxyxyxf在(0,0)处的连续性.解取,cosxsiny)0,0(),(fyxf)cos(sin3322)0,0(),(fyxf故函数在(0,0)处连续.),0,0(),(lim)0,0(),(fyxfyx,0,2当时220yx例6讨论函数0,00,),(222222yxyxyxxyyxf在(0,0)的连续性.解取kxy2200limyxxyyx22220limxkxkxkxyx21kk其值随k的不同而变化,极限不存在.故函数在(0,0)处不连续.闭区域上连续函数的性质在有界闭区域D上的多元连续函数,在D上至少取得它的最大值和最小值各一次.在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两值之间的任何值至少一次.(1)最大值和最小值定理(2)介值定理(3)一致连续性定理在有界闭区域D上的多元连续函数必定在D上一致连续.多元初等函数:由多元多项式及基本初等函数经过有限次的四则运算和复合步骤所构成的可用一个式子所表示的多元函数叫多元初等函数一切多元初等函数在其定义区域内是连续的.定义区域是指包含在定义域内的区域或闭区域.例7.11lim00xyxyyx求解)11(11lim00xyxyxyyx原式111lim00xyyx.21).()(lim)()()()(lim00000PfPfPPfPfPPfPfPPPP处连续,于是点在的定义域的内点,则是数,且是初等函时,如果一般地,求多元函数极限的概念多元函数连续的概念闭区域上连续函数的性质(注意趋近方式的任意性)四、小结多元函数的定义若点),(yx沿着无数多条平面曲线趋向于点),(00yx时,函数),(yxf都趋向于A,能否断定Ayxfyxyx),(lim),(),(00?思考题思考题解答不能.例,)(),(24223yxyxyxf)0,0(),(yx取,kxy2442223)(),(xkxxkxkxxf00x但是不存在.),(lim)0,0(),(yxfyx原因为若取,2yx244262)(),(yyyyyyf.41一、填空题:1、若yxxyyxyxftan),(22,则),(tytxf=____.2、若xyyxyxf2),(22,则)3,2(f__________;),1(xyf________________.3、若)0()(22yyyxxyf,则)(xf________.4、若22),(yxxyyxf,则),(yxf_________.函数)1ln(4222yxyxz的定义域是__________.练习题6、函数yxz的定义域是______________.7、函数xyzarcsin的定义域是_______________.8、函数xyxyz2222的间断点是________________.二、求下列各极限:1、xyxyyx42lim00;2、xxyyxsinlim00;3、22222200)()cos(1limyxyxyxyx.三、证明:0lim2200yxxyyx.四、证明极限yxxyyx11lim00不存在.一、1、),(2yxft;2、1213,),(yxf;3、xx21;4、yyx112;5、xyyxyx4,10),(222;6、yxyxyx2,0,0),(;7、xyxxyx,0),(xyxxyx,0),(;8、02),(2xyyx.二、1、41;2、0;3、.练习题答案定义设函数),(yxfz在点),(00yx的某一邻域内有定义,当y固定在0y而x在0x处有增量x时,相应地函数有增量),(),(0000yxfyxxf,如果xyxfyxxfx),(),(lim00000存在,则称此极限为函数),(yxfz在点),(00yx处对x的偏导数,记为一、偏导数的定义及其计算法同理可定义函数),(yxfz在点),(00yx处对y的偏导数,为yyxfyyxfy),(),(lim00000记为00yyxxyz,00yyxxyf,00yyxxyz或),(00yxfy.00yyxxxz,00yyxxxf,00yyxxxz或),(00yxfx.如果函数),(yxfz在区域D内任一点),(yx处对x的偏导数都存在,那么这个偏导数就是x、y的函数,它就称为函数),(yxfz对自变量x的偏导数,记作xz,xf,xz或),(yxfx.同理可以定义函数),(yxfz对自变量y的偏导数,记作yz,yf,yz或),(yxfy.偏导数的概念可以推广到二元以上函数如在处),,(zyxfu),,(zyx,),,(),,(lim),,(0xzyxfzyxxfzyxfxx,),,(),,(lim),,(0yzyxfzyyxfzyxfyy.),,(),,(lim),,(0zzyxfzzyxfzyxfzz例1求223yxyxz在点)2,1(处的偏导数.解xz;32yxyz.23yx
本文标题:7高等数学课件(完整版)详细
链接地址:https://www.777doc.com/doc-4605199 .html