您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 浙教版七年级下数学辅导六---乘法公式的拓展及常见题型整理
七年级下数学辅导六乘法公式的拓展及常见题型整理一.公式拓展:拓展一:abbaba2)(222abbaba2)(2222)1(1222aaaa2)1(1222aaaa拓展二:abbaba4)()(22222222ababababbaba4)()(22abbaba4)()(22拓展三:bcacabcbacba222)(2222拓展四:杨辉三角形3223333)(babbaaba4322344464)(babbabaaba拓展五:立方和与立方差))((2233babababa))((2233babababa二.常见题型:(一)公式倍比例题:已知ba=4,求abba222。⑴如果1,3caba,那么222accbba的值是⑵1yx,则222121yxyx=⑶已知xy2yx,yxxx2222)()1(则=(二)公式组合例题:已知(a+b)2=7,(a-b)2=3,求值:(1)a2+b2(2)ab⑴若()()abab22713,,则ab22____________,ab_________⑵设(5a+3b)2=(5a-3b)2+A,则A=⑶若()()xyxya22,则a为⑷如果22)()(yxMyx,那么M等于⑸已知(a+b)2=m,(a—b)2=n,则ab等于⑹若Nbaba223232,则N的代数式是⑺已知,3)(,7)(22baba求abba22的值为。⑻已知实数a,b,c,d满足53bc,adbdac,求))((2222dcba(三)整体代入例1:2422yx,6yx,求代数式yx35的值。例2:已知a=201x+20,b=201x+19,c=201x+21,求a2+b2+c2-ab-bc-ac的值⑴若499,7322yxyx,则yx3=⑵若2ba,则bba422=若65ba,则baba3052=⑶已知a2+b2=6ab且a>b>0,求baba的值为⑷已知20122013xa,20142013xb,20162013xc,则代数式cabcabcba222的值是.(四)步步为营例题:3(22+1)(24+1)(28+1)(162+1)⑴6)17((72+1)(74+1)(78+1)+1⑵224488ababababab⑶1)12()12()12()12()12()12(3216842⑷2220132014—+2220112012…+22221234(5)2222201411......411311211(五)分类配方例题:已知03410622nmnm,求nm的值。⑴已知:x²+y²+z²-2x+4y-6z+14=0,则x+y+z的值为。⑵已知x²+y²-6x-2y+10=0,则11xy的值为。⑶已知x2+y2-2x+2y+2=0,求代数式20142013yx的值为.⑷若xyxy2246130,x,y均为有理数,求yx的值为。⑸已知a2+b2+6a-4b+13=0,求(a+b)2的值为⑹说理:试说明不论x,y取什么有理数,多项式x2+y2-2x+2y+3的值总是正数.(六)首尾互倒例1:已知242411112,1;(2);(3)xaaaxaaa求:()例2:已知a2-7a+1=0.求aa1、221aa和21aa的值;⑴已知0132xx,求①221xx=②221xx=⑵若x2-219x+1=0,求441xx的值为⑶如果12aa,那么221aa=2、已知51xx,那么221xx=_______⑷已知31xx,则221xx的值是⑸若12aa且0a1,求a-a1的值是⑹已知a2-3a+1=0.则aa1=,a-a1=,221aa的值为.⑺已知31xx,求①221xx=②441xx=⑻已知a2-7a+1=0.则aa1=,221aa=,21aa=.(七)知二求一例题:已知3,5abba,求:①22ba②ba③22ba④abba⑤22baba⑥33ba⑴已知2nm,2mn,则)1)(1(nm_______⑵若a2+2a=1则(a+1)2=________.⑶若22ab7,a+b=5,则ab=若22ab7,ab=5,则a+b=⑷若x2+y2=12,xy=4,则(x-y)2=_________.22ab7,a-b=5,则ab=.⑸若22ab3,ab=-4,则a-b=.⑹已知:a+b=7,ab=-12,求①a2+b2=,②a2-ab+b2=,③(a-b)2=.⑺已知a+b=3,a3+b3=9,则ab=,a2+b2=,a-b=.(8)已知20ab,15ac,求222abcbc的值.(9)已知a,b满足等式2220xab,42yba,判断x,y的大小关系.(10)已知a,b,c满足等式227ab,221bc,2617ca,求abc的值.
本文标题:浙教版七年级下数学辅导六---乘法公式的拓展及常见题型整理
链接地址:https://www.777doc.com/doc-4612300 .html