您好,欢迎访问三七文档
精品资料欢迎下载数学因式分解知识点数学因式分解知识点(1)因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.(2)公因式:一个多项式每一项都含有的相同的因式叫做这个多项式的公因式.(3)确定公因式的方法:公因数的系数应取各项系数的最大公约数;字母取各项的相同字母,而且各字母的指数取次数最低的.(4)提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.(5)提出多项式的公因式以后,另一个因式的确定方法是:用原来的多项式除以公因式所得的商就是另一个因式.(6)如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的,在提出“-”号时,多项式的各项都要变号.(7)因式分解和整式乘法的关系:因式分解和整式乘法是整式恒等变形的正、逆过程,整式乘法的结果是整式,因式分解的结果是乘积式.(8)运用公式法:如果把乘法公式反过来,就可以用来精品资料欢迎下载把某些多项式分解因式,这种分解因式的方法叫做运用公式法.(9)平方差公式:两数平方差,等于这两数的和乘以这两数的差,字母表达式:a2-b2=(a+b)(a-b)(10)具备什么特征的两项式能用平方差公式分解因式①系数能平方,(指的系数是完全平方数)②字母指数要成双,(指的指数是偶数)③两项符号相反.(指的两项一正号一负号)数学因式分解方法(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。公因式:多项式的各项都含有的相同的因式。公因式可以是一个数字或字母,也可以是一个单项式或多项式。系数——取各项系数的最大公约数字母——取各项都含有的字母指数——取相同字母的最低次幂例:12a3b3c-8a3b2c3+6a4b2c2的公因式是___________.解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公数为2;字母部分精品资料欢迎下载a3b3c,a3b2c3,a4b2c2都含有因式a3b2c,故多项式的公因式是2a3b2c.②提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。多项式中第一项有负号的,要先提取符号。(2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。a逆用平方差公式:a2-b2=(a+b)(a-b)b逆用平方差公式:a2±2ab+b2=(a±b)2c逆用平方差公式:a3+b3=(a+b)(a2-ab+b2)(拓展)d逆用平方差公式:a3-b3=(a-b)(a2+ab+b2)(拓展)注意:①公式中的字母可代表一个数、一个单项式或一个多项式。②选择使用公式的方法:主要从项数上看,若多项式是二项式可考虑平方差公式;若多项式是三项式,可考虑完全精品资料欢迎下载平方公式。(3)分组分解法(拓展)①将多项式分组后能提公因式进行因式分解;例:把多项式ab-a+b-1分解因式解:ab-a+b-1=(ab-a)+(b-1)=a(b-1)+(b-1)=(a+1)(b-1)②将多项式分组后能运用公式进行因式分解.例:将多项式a2-2ab-1+b2因式分解解:a2-2ab-1+b2=(a2-2ab+b2)-1=(a-b)2-1=(a-b+1)(a-b-1)(4)十字相乘法(形如x2+(p+q)x+pq=(x+p)(x+q)形式的多项式,可以考虑运用此种方法)方法:常数项拆成两个因数p和q,这两数的和p+q为一次项系数x2+(p+q)x+pqx2+(p+q)x+pq=(x+p)(x+q)例:分解因式x2-x-30补充点详解我们可以将-30分解成p×q的形式,使p+q=-1,p×q=-30,我们就有你p=-6,q=5.所以将多项式x2+(p+q)x+pq可以分解为(x+p)(x+q)精品资料欢迎下载x2-x-30=(x-6)(x+5)数学因式分解一般步骤如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
本文标题:数学因式分解知识点
链接地址:https://www.777doc.com/doc-4614076 .html