您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 数学:25.3利用频率估计概率课件(人教新课标九年级上)(1)
用频率估计概率用列举法求概率的条件是什么?nmAP(1)实验的所有结果是有限个(n)(2)各种结果的可能性相等.当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时.又该如何求事件发生的概率呢?试验抛掷一枚质地均匀的硬币,尽管不能事先确定“正面向上”还是“反面向上”,但是直觉告诉我们这两个可能性各是一半,这种猜想是否正确,下面我们通过试验来检验......下面我们统计“正面向上的频率”(m/n)组别第一组第二组第三组第四组第五组第六组第七组第八组第九组第十组抛掷次数50505050505050505050正面向上次数(n)频率(n/m)抛掷次数50100150200250300350400450500正面向上次数(n)频率(n/m)材料:在重复抛掷一枚硬币时,“正面向上”的频率在0.5左右摆动。随着抛掷次数的增加,一般的,频率呈现一定的稳定性:在0.5左右摆动的幅度会越来越小。这时,我们称“正面向上”的频率稳定于0.5.思考:随着抛掷次数的增加,“正面向上”的频率的变化趋势有何变化?2000数学史实事实上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性。瑞士数学家雅各布·伯努利(1654-1705被公认为是概率论的先驱之一,他最早阐明了随着试验次数的增加,频率稳定在概率附近。归纳:一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么事件A发生的概率P(A)=p。nm用频率估计的概率可能小于0吗?可能大于1吗?问题1:某林业部门要考查某种幼树在一定条件下的移植成活率,应采取什么具体做法?该问题不属于结果可能性相等的类型.移植中有两种情况活或死.它们的可能性并不相等,事件发生的概率并不都为50%.某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?观察在各次试验中得到的幼树成活的频率,谈谈你的看法.估计移植成活率移植总数(n)成活数(m)108成活的频率0.8()nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897是实际问题中的一种概率,可理解为成活的概率.估计移植成活率由下表可以发现,幼树移植成活的频率在____左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植成活的概率为_____.0.90.9移植总数(n)成活数(m)108成活的频率0.8()nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897由下表可以发现,幼树移植成活的频率在____左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植成活的概率为_____.0.90.9移植总数(n)成活数(m)108成活的频率0.8()nm50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.8971.林业部门种植了该幼树1000棵,估计能成活_______棵.2.我们学校需种植这样的树苗500棵来绿化校园,则至少向林业部门购买约_______棵.900556估计移植成活率频率与概率的异同事件发生的概率是一个定值。而事件发生的频率是波动的,与试验次数有关。当试验次数不大时,事件发生的频率与概率的偏差甚至会很大。只有通过大量试验,当试验频率区趋于稳定,才能用事件发生的频率来估计概率。投篮次数(n)50100150200250300500投中次数(m)投中频率()nm练习:下表记录了一名球员在罚球线上的投篮结果。(1)计算表中的投中频率(精确到0.01);(2)这个球员投篮一次,投中的概率大约是多少?(精确到0.1)例1、某水果公司以2元/千克的成本新进了10000千克柑橘,销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率“统计,并把获得的数据记录在下表中了。柑橘总质量(n)千克损坏柑橘质量(m)千克柑橘损坏的频率(m/n)505.5010010.5015015.1520019.4225024.3530030.3235035.3240039.2445044.5750051.540.1100.1050.1010.0970.0970.1010.1010.0980.0990.103为简单起见,我们能否直接把表中的500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?(2)根据表中数据填空:这批柑橘损坏的概率是______,则完好柑橘的概率是_______,如果某水果公司以2元/千克的成本进了10000千克柑橘,则这批柑橘中完好柑橘的质量是________,若公司希望这些柑橘能够获利5000元,那么售价应定为_______元/千克比较合适.0.10.990002.8在相同情况下随机的抽取若干个体进行实验,进行实验统计.并计算事件发生的频率根据频率估计该事件发生的概率.nm当试验次数很大时,一个事件发生频率也稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.试一试1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼_______尾,鲢鱼_______尾.3102702.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?解:根据概率的意义,可以认为其概率大约等于250/2000=0.125.该镇约有100000×0.125=12500人看中央电视台的早间新闻.升华提高了解了一种方法-------用多次试验频率去估计概率体会了一种思想:用样本去估计总体用频率去估计概率弄清了一种关系------频率与概率的关系当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.
本文标题:数学:25.3利用频率估计概率课件(人教新课标九年级上)(1)
链接地址:https://www.777doc.com/doc-4620355 .html