您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高中数学选修1-2-1.1回归分析的基本思想及其初步应用
新学期我们怀揣大学梦想,只要我们相信自己,刻苦努力每一天,就一定能考进北京大学未名湖和博雅塔第一章统计案例a.比《数学3》中“回归”增加的内容数学3——统计1.画散点图2.了解最小二乘法的思想3.求回归直线方程y=bx+a4.用回归直线方程解决应用问题选修1-2——统计案例5.引入线性回归模型y=bx+a+e6.了解模型中随机误差项e产生的原因7.了解相关指数R2和模型拟合的效果之间的关系8.了解残差图的作用9.利用线性回归模型解决一类非线性回归问题10.正确理解分析方法与结果我们回忆一下最小二乘法:样本点的中心:xbyaxxyyxxbniiniiiˆˆ)())((ˆ121),(yxniixnx11niiyny11回归方程:axbyˆˆˆMODESHIFTSCL=113,M+16549,M+17565,M+16558,M+15751,M+17053SHIFTASHIFTB2==1(进入回归计算模式)(清除统计存储器)(输入五组数据)所以回归方程为y=0.673x-56.79(计算参数a)(计算参数b)EXCEL怎样使用函数计算器求线性回归方程?问题1:正方形的面积y与正方形的边长x之间的函数关系是y=x2确定性关系问题2:某水田水稻产量y与施肥量x之间是否-------有一个确定性的关系?例如:在7块并排、形状大小相同的试验田上进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:施化肥量x15202530354045水稻产量y330345365405445450455复习:变量之间的两种关系自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。1、定义:1):相关关系是一种不确定性关系;注对具有相关关系的两个变量进行统计分析的方法叫回归分析。2):2、现实生活中存在着大量的相关关系。如:人的身高与年龄;产品的成本与生产数量;商品的销售额与广告费;家庭的支出与收入。等等探索:水稻产量y与施肥量x之间大致有何规律?1020304050500450400350300·······发现:图中各点,大致分布在某条直线附近。探索2:在这些点附近可画直线不止一条,哪条直线最能代表x与y之间的关系呢?xy施化肥量水稻产量施化肥量x15202530354045水稻产量y330345365405445450455散点图我们回忆一下最小二乘法:样本点的中心:xbyaxxyyxxbniiniiiˆˆ)())((ˆ121),(yxniixnx11niiyny11回归方程:axbyˆˆˆ例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们关系。我们可以用下面的线性回归模型来表示:y=bx+a+e,其中a和b为模型的未知参数,e称为随机误差。思考P3产生随机误差项e的原因是什么?思考产生随机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、其它因素的影响:影响体重y的因素不只是身高x,可能还包括遗传基因、饮食习惯、是否喜欢运动、生长环境、度量误差等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高x的观测误差。例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。根据最小二乘法估计和就是未知参数a和b的最好估计,abniiniiiniiniiixnxyxnyxxbyaxxyyxxb1221121)())((制表78合计654321ixy,,ixxiyy()()iixxyy2()ixxniiniiynyxnx1111,其中所以回归方程是0.84985.712yx所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为0.8497285.71260.316()ykg(,)xy称为样本点的中心探究P4:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。712.85849.0^^ab,于是得到探究P4:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重在60.316kg左右。60.136kg不是每个身高为172cm的女大学生的体重的预测值,而是所有身高为172cm的女大学生平均体重的预测值。函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解释部分y的变化。在统计中,我们也把自变量x称为解释变量,因变量y称为预报变量。1.用相关系数r来衡量2.公式:12211niiinniiiixxyyrxxyy求出线性相关方程后,说明身高x每增加一个单位,体重y就增加0.849个单位,这表明体重与身高具有正的线性相关关系.如何描述它们之间线性相关关系的强弱呢?849.0b00rxyrxy当时,表示与为正相关;当时,表示与为负相关①、当时,x与y为完全线性相关,它们之间存在确定的函数关系。②、当时,表示x与y存在着一定的线性相关,r的绝对值越大,越接近于1,表示x与y直线相关程度越高,反之越低。1r10r3.性质:我们可以用相关指数R2来刻画回归的效果,其计算公式是22121()11()niiiniiyyRyy残差平方和。总偏差平方和显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。在线性回归模型中,R2表示解释变量对预报变量变化的贡献率。R2越接近1,表示回归的效果越好(因为R2越接近1,表示解释变量和预报变量的线性相关性越强)。如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。总的来说:相关指数R2是度量模型拟合效果的一种指标。在线性模型中,它代表自变量刻画预报变量的能力。我们可以用相关指数R2来刻画回归的效果,其计算公式是22121()11()niiiniiyyRyy残差平方和。总偏差平方和1354总计0.36128.361随机误差(e)0.64225.639解释变量(身高)比例平方和来源表1-3从表3-1中可以看出,解释变量对总效应约贡献了64%,即R2≈0.64,可以叙述为“身高解析了64%的体重变化”,而随机误差贡献了剩余的36%。所以,身高对体重的效应比随机误差的效应大得多。在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。残差分析与残差图的定义:然后,我们可以通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析。12,,,neee编号12345678身高/cm165165157170175165155170体重/kg4857505464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。表1-4列出了女大学生身高和体重的原始数据以及相应的残差数据。iiieyy=使用公式计算残差残差图的制作及作用。•坐标纵轴为残差变量,横轴可以有不同的选择;•若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;•对于远离横轴的点,要特别注意。身高与体重残差图异常点•错误数据•模型问题几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。用身高预报体重时,需要注意下列问题:1、回归方程只适用于我们所研究的样本的总体;2、我们所建立的回归方程一般都有时间性;3、样本采集的范围会影响回归方程的适用范围;4、不能期望回归方程得到的预报值就是预报变量的精确值。事实上,它是预报变量的可能取值的平均值。——这些问题也使用于其他问题。一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)。(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。练:某种产品的广告费支出x与销售额y之间有如表所示数据:零件数X24568加工时间y(分钟)3040605070(1)0.9192rˆ(2)6.517.5yx(1)求x,y之间的相关系数;(2)求线性回归方程;
本文标题:高中数学选修1-2-1.1回归分析的基本思想及其初步应用
链接地址:https://www.777doc.com/doc-4625992 .html