您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 知识点31--与圆有关的位置关系2019
一、选择题5.(2019·苏州)如图,AB为⊙O的切线.切点为A,连接AO,BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°(第5题)【答案】D【解析】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质.∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°,故选D.1.(2019·无锡)如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A.20°B.25°C.40°D.50°【答案】B【解析】∵PA是⊙O的切线,切点为A,∴OA⊥AP,∴∠OAP=90°,∵∠APB=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB=∠AOP=25°.故选B.2.(2019·自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE的面积取得最小值时,tan∠BAD的值是()A.817B.717C.49D.59xyxyO-6OOOBCAABBAPEF【答案】B.【解析】∵A(8,0),B(0,8),∠AOB=900,∴△AOB是等腰直角三角形,∴AB=8√2,∠OBA=450,取D(-5,0),当C、F分别在直线x=-5和x轴上运动时,∵线段DH是Rt△CFD斜边上中线,∴DH=12CF=10,故D在以H为圆心,半径为5的圆上运动,当AD与圆H相切时,△ABE的面积最小.在Rt△ADH中,AH=OH+OA=13,∴AD=√AH2−𝐴𝐷2=12.∵∠AOE=∠ADH=900,∠EAO=∠HAD,∴△AOE∽△ADH,∴𝑂E𝐴𝑂=𝐷𝐻𝐴𝐷,即𝑂E8=512,∴OE=103,∴BE=OB-OE=143.∵S△ABE=12BE·OA=12AB·EG,∴EG=𝐵E·OA𝐴𝐵=143×88√2=7√23.在Rt△BGE中,∠EBG=450,∴BG=EG=7√23,∴AG=AB-BG=17√23.在Rt△AEG中,tan∠BAD=𝐸𝐺𝐴𝐺=717.故选B.3.(2019·台州)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则O的半径为()A.23B.3C.4D.43【答案】A【解析】∵O与AB,AC相切,∴OD⊥AB,OE⊥AC,又∵OD=OE,∴∠DAO=∠EAO,又∵AB=AC,∴BO=CO,∴∠DAO=30°,BO=4,∴OD=OAtan∠DAO=3OA,又∵在Rt△AOB中,2243AOABOB,∴OD=23,故选A.4.(2019·重庆B卷)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°则∠B的度数为()A.60°B.50°C.40°D.30°【答案】B【解析】圆的切线垂直于经过切点的半径,因为AC是⊙O的切线,A为切点,所以∠BAC=90°,根据三角形内角和定理,若∠C=40°则∠B的度数为50°.故选B.5.(2019·重庆A卷)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°【答案】C【解析】∵AC是⊙O的切线,∴AC⊥AB.∵∠C=50°,∴∠B=90°-∠C=40°.∵OB=OD,∴∠B=∠ODB=40°.∴∠AOD=∠B+∠ODB=80°.故选C.6.7.8.9.10.二、填空题1.(2019·岳阳)如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是_____.(写出所有正确结论的序号)①AM平分∠CAB;②AM2=AC·AB;③若AB=4,∠APE=30°,则BM的长为3;④若AC=3,BD=1,则有CM=DM=3.【答案】①②④【解析】连接OM,BMODCBA∵PE是⊙O的切线,∴OM⊥PE.∵AC⊥PE,∴AC∥OM.∴∠CAM=∠AMO.∵OA=OM,∴∠AMO=∠MAO.∴∠CAM=∠MAO.∴AM平分∠CAB.选项①正确;∵AB为直径,∴∠AMB=90º=∠ACM.∵∠CAM=∠MAO,∴△AMC∽△ABM.∴ACAMAMAB.∴AM2=AC·AB.选项②正确;∵∠P=30°,∴∠MOP=60°.∵AB=4,∴半径r=2.∴60221803BMl.选项③错误;∵BD∥OM∥AC,OA=OB,∴CM=MD.∵∠CAM+∠AMC=90°,∠AMC+∠BMD=90°,∴∠CAM=∠BMD.∵∠ACM=∠BDM=90°,∴△ACM∽△MDB.∴ACCMDMBD.∴CM·DM=3×1=3.∴CM=DM=3.选项④正确;综上所述,结论正确的有①②④.2.(2019·无锡)如图,在△ABC中,AC∶BC∶AB=5∶12∶13,O在△ABC内自由移动,若O的半径为1,且圆心O在△ABC内所能到达的区域的面积为103,则△ABC的周长为__________.【答案】25【解析】如图,圆心O在△ABC内所能到达的区域是△O1O2O3,∵△O1O2O3三边向外扩大1得到△ACB,∴它的三边之比也是5∶12∶13,∵△O1O2O3的面积=103,∴O1O2=53,O2O3=4,O1O3=133,连接AO1与CO2,并延长相交于I,过I作ID⊥AC于D,交O1O2于E,过I作IG⊥BC于G交O3O2于F,则I是Rt△ABC与Rt△O1O2O3的公共内心,四边形IEO2F四边形IDCG都是正方形,∴IE=IF=1223122313OOOOOOOOOO=23,ED=1,∴ID=IE+ED=53,设△ACB的三边分别为5m、12m、13m,则有ID=ACBCACBCAB=2m=53,解得m=56,△ABC的周长=30m=25.3.(2019·济宁)如图,O为Rt△ABC直角边AC上一点,以OC为半径的⊙O与斜边AB相切于点D,交OA于点E,已知BC=3,AC=3.则图中阴影部分的面积是.【答案】6334EDOBAC【解析】在Rt△ABC中,∵3tan3BCAAC,∴∠A=30°.∵⊙O与斜边AB相切于点D,∴OD⊥AB.设⊙O的半径为r,在Rt△ADO中,tan3ODrAOAr,解得r=3332,∴阴影的面积是S=60360×π×(3332)2=6-334π.4.(2019·眉山)如图,在Rt△AOB中,OA=OB=42,⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长的最小值为.【答案】23【解析】连接OQ,如图所示,∵PQ是⊙O的切线,∴OQ⊥PQ,根据勾股定理知:PQ2=OP2-OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=42,∴AB=2OA=8,∴S△AOB=12OA•OB=12AB•OP,即OP=OAOBAB=4,∴PQ=22OPOQ=2242=23.故答案为:23.5.(2019·宁波)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的P与△ABC的一边相切时,AP的长为________.【答案】132或313【解析】半径为6的P与△ABC的一边相切,可能与AC,BC,AB相切,故分类讨论:①当P与AC相切时,点P到AC的距离为6,但点P在线段AD上运动,距离最大在点D处取到,为5,故这种情况不存在;②当P与AC相切时,点P到BC的距离为6,如图PE=6,PE⊥AC,∴PE为△ACD的中位线,点P为AD中点,∴AP=113=22AD;③当P与AB相切时,点P到AB的距离为6,即PF=6,PF⊥AB,过点D作DG⊥AB于点G,∴△APF∽△ADG∽△ABC,∴PFACAPAB,其中,PF=6,AC=12,AB=22ACBC=613,∴AP=313;综上所述,AP的长为132或313.6.7.8.9.10.三、解答题23.(2019·衡阳)如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D,连接BC,且∠BCA=∠OAC=30°.(1)求证:BD是⊙O的切线;(2)求图中阴影部分的面积.解:(1)证明:连接OB交AC于E,由∠BCA=30°,∴∠AOB=60°.在∆AOE中,∵∠OAC=30°,∴∠OEA=90°,所以OB⊥AC.∵BD∥AC,∴OB⊥BD.又B在圆上,∴BD为⊙O的切线;(2)由半径为8,所以OA=OB=8.在∆AOC中,∠OAC=∠OCA=30°,∠COA=120°,∴AC=83.由∠BCA=∠OAC=30°,∴OA∥BC,而BD∥AC,∴四边形ABCD是平行四边形.∴BD=83.∴∆OBD的面积为12×8×83=323,扇形OAB的面积为16×π×82=323,∴阴影部分的面积为323-323.24.(2019·淮安)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.第24题图【解题过程】(1)直线DE与⊙O相切.理由如下:第24题答图1DAOCBEDAOCB如图所示,连接OD,则OA=OD,∴∠ODA=∠BAD.∵弦AD平分∠BAC,∴∠FAD=∠BAD.∴∠FAD=∠ODA,∴OD∥AF.又∵DE⊥AC,∴DE⊥OD,∴直线DE与⊙O相切.(2)连接BD,∵AB是⊙O的直径,∴∠ADB=90°.第24题答图1∵AD平分∠BAC,∠BAC=60°,∴∠FAD=∠BAD=30°,∠B=60°,∴∠DFE=∠B=60°.∵⊙O的半径为2,∴AB=4,∴3223430cosABAD,∴3213230sinABDE,∴13360tanDEEF.22.(2019·常德,22题,7分)如图6,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,CE=6,求AC的长.【解题过程】证明:(1)连接OD,∵DE∥OA,∴∠AOC=∠OED,∠AOD=∠ODE,∵OD=OE,∴∠OED=∠ODE,∴∠AOC=∠AOD,又∵OA=OA,OD=OC,∴△AOC≌△AOD(SAS),∴∠ADO=∠ACO.∵CE是⊙O的直径,AC为⊙O的切线,∴OC⊥AC,∴∠OCA=90°,∴∠ADO==90°,∴OD⊥AB,∵OD为⊙O的半径,∴AB是⊙O的切线.(2)∵CE=6,∴OD=OC=3,∵∠BDO=90°,∴222BOBDOD,∵BD=4,∴OB=2243=5,∴BC=8,∵∠BDO=∠OCA=90°,∠B=∠B,∴△BDO∽△BCA,∴BDODBCAC,∴438AC,∴AC=6.21.(2019·武汉)已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点(1)如图1,求证:AB2=4AD·BC(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积图1图2【解题过程】证明:(1)如图1,连接OD,OC,OE.∵AD,BC,CD是⊙O的切线,∴OA⊥AD,OB⊥BC,OE⊥CD,AD=ED,BC=EC,∠ODE=12∠ADC,∠OCE=12∠BCD∴AD//BC,∴∠ODE+∠OCE=12(∠ADC+∠BCD)=90°,∵∠ODE+∠DOE=90°,∴∠DOE=∠OCE.又∵∠OED=∠CEO
本文标题:知识点31--与圆有关的位置关系2019
链接地址:https://www.777doc.com/doc-4631279 .html