您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 中线倍长法及截长补短经典讲义
1几何证明中常用辅助线(一)中线倍长法:例1、求证:三角形一边上的中线小于其他两边和的一半。已知:如图,△ABC中,AD是BC边上的中线,求证:AD﹤21(AB+EDABCAC)小结:涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。它可以将分居中线两旁的两条边AB、AC和两个角∠BAD和∠CAD集中于同一个三角形中,以利于问题的获解。例2、中线一倍辅助线作法△ABC中方式1:延长AD到E,AD是BC边中线使DE=AD,连接BE方式2:间接倍长方式3:作CF⊥AD于F,延长MD到N,作BE⊥AD的延长线于E使DN=MD,连接BE连接CD例3、△ABC中,AB=5,AC=3,求中线AD的取值范围例4、已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE课堂练习:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAEBCDAEDABCFEDCBANDCBAMFECABDEDABC2作业:1、在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。试探究线段AB与AF、CF之间的数量关系,并证明你的结论2、已知:如图,ABC中,C=90,CMAB于M,AT平分BAC交CM于D,交BC于T,过D作DE//AB交BC于E,求证:CT=BE.3:已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF(二)截长补短法教八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解决这一类问题的一种特殊方法,在无法进行直接证明的情形下,利用此种方法常可使思路豁然开朗.请看几例.例1.已知,如图1-1,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC.求证:∠BAD+∠BCD=180°.分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现.证明:过点D作DE垂直BA的延长线于点E,作DF⊥BC于点F,如图1-2∵BD平分∠ABC,∴DE=DF,在Rt△ADE与Rt△CDF中,CDADDFDE∴Rt△ADE≌Rt△CDF(HL),∴∠DAE=∠DCF.又∠BAD+∠DAE=180°,∴∠BAD+∠DCF=180°,即∠BAD+∠BCD=180°.FEABCDDABCMTEABCD图1-1FEDCBA图1-23例2.如图2-1,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB.求证:CD=AD+BC.分析:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的.证明:在CD上截取CF=BC,如图2-2在△FCE与△BCE中,CECEBCEFCECBCF∴△FCE≌△BCE(SAS),∴∠2=∠1.又∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠CDE=90°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,43DEDEADEFDE∴△FDE≌△ADE(ASA),∴DF=DA,∵CD=DF+CF,∴CD=AD+BC.例3.已知,如图3-1,∠1=∠2,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD.求证:∠BAP+∠BCP=180°.分析:与例1相类似,证两个角的和是180°,可把它们移到一起,让它们是邻补角,即证明∠BCP=∠EAP,因而此题适用“补短”进行全等三角形的构造.证明:过点P作PE垂直BA的延长线于点E,如图3-2∵∠1=∠2,且PD⊥BC,∴PE=PD,在Rt△BPE与Rt△BPD中,BPBPPDPE∴Rt△BPE≌Rt△BPD(HL),∴BE=BD.∵AB+BC=2BD,∴AB+BD+DC=BD+BE,∴AB+DC=BE即DC=BE-AB=AE.在Rt△APE与Rt△CPD中,DCAEPDCPEAPDPE∴Rt△APE≌Rt△CPD(SAS),∴∠PAE=∠PCD又∵∠BAP+∠PAE=180°,∴∠BAP+∠BCP=180°例4.已知:如图4-1,在△ABC中,∠C=2∠B,∠1=∠2.求证:AB=AC+CD.ADBCEF1234图2-2ABCDP12N图3-1P12NABCDE图3-2DCBA12图4-14分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长AC至E使CE=CD,或在AB上截取AF=AC.证明:方法一(补短法)延长AC到E,使DC=CE,则∠CDE=∠CED,如图4-2∴∠ACB=2∠E,∵∠ACB=2∠B,∴∠B=∠E,在△ABD与△AED中,ADADEB21∴△ABD≌△AED(AAS),∴AB=AE.又AE=AC+CE=AC+DC,∴AB=AC+DC.方法二(截长法)在AB上截取AF=AC,如图4-3在△AFD与△ACD中,ADADACAF21∴△AFD≌△ACD(SAS),∴DF=DC,∠AFD=∠ACD.又∵∠ACB=2∠B,∴∠FDB=∠B,∴FD=FB.∵AB=AF+FB=AC+FD,∴AB=AC+CD.上述两种方法在实际应用中,时常是互为补充,但应结合具体题目恰当选择合适思路进行分析。让掌握学生掌握好“截长补短法”对于更好的理解数学中的化归思想有较大的帮助。作业:1、已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.2、五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:AD平分∠CDEFEDCBAEDCBA12图4-2FDCBA12图4-35(三)其它几种常见的形式:1、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。例1、如图1:已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.2、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。例::如图2:AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.练习:已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向形外作等腰直角三角形,如图4,求证EF=2AD。3、延长已知边构造三角形:例如:如图6:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求证:AD=BCABCDEFN1图12342图ABCDEFM1234ABCDEF4图ABCDE6图OCEDBA64、连接四边形的对角线,把四边形的问题转化成为三角形来解决。例如:如图7:AB∥CD,AD∥BC求证:AB=CD。5、有和角平分线垂直的线段时,通常把这条线段延长。例如:如图8:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E。求证:BD=2CE.6、连接已知点,构造全等三角形。例如:已知:如图9;AC、BD相交于O点,且AB=DC,AC=BD,求证∠A=∠D.8、取线段中点构造全等三有形。例如:如图10:AB=DC,∠A=∠D求证:∠ABC=∠DCB.截长补短专题训练作业:1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE(1)求证:BE=CE;(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.ABCD7图1234DCBA110图O10图DCBAMN7NMPDCBA2.如图,□ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DFA=2∠BAE.(1)若∠D=105°,∠DAF=35°.求∠FAE的度数;(2)求证:AF=CD+CF.3、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°.(1)若AB=6cm,,求梯形ABCD的面积;(2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.4、如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,且AF⊥AB,连接EF.(1)若EF⊥AF,AF=4,AB=6,求AE的长.(2)若点F是CD的中点,求证:CE=BE﹣AD.5.在□ABCD中,对角线BDBC,G为BD延长线上一点且ABG为等边三角形,BAD、CBD的平分线相交于点E,连接AE交BD于F,连接GE.(1)若□ABCD的面积为93,求AG的长;(2)求证:AEBEGE.6.已知:如图,在矩形ABCD中,AC是对角线.点P为矩形外一点且满足APPC,APPC.PC交AD于点N,连接DP,过点P作PMPD交AD于M.(1):若15,3APABBC,求矩形ABCD的面积;(2):若CDPM,求证:ACAPPN.BD2题图EAFC87、如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BEDP交DP的延长线于点E,连接AE,过点A作AFAE交DP于点F,连接BF。(1)若2AE,求EF的长;(2)求证:PFEPEB。9.如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连结CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M.点G是线段CE上一点,且CO=CG.(1)若OF=4,求FG的长;(2)求证:BF=OG+CF.ABDCOEFGM9题图
本文标题:中线倍长法及截长补短经典讲义
链接地址:https://www.777doc.com/doc-4633009 .html