您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 高频电感耦合等离子体发射(ICP-OES)光谱仪采购浅谈
1高频电感耦合等离子体发射(ICP-OES)光谱仪采购浅谈西北狼活土匪致谢:此文本在2005年上半年开稿的,后因个人工作忙未能续写,耽误至今,草草了稿,后送ICP论坛斑竹活土匪检查修改,终定稿。在此我对活土匪斑竹抽出时间来检查修改该稿表示诚挚的谢意!希望该文的出稿对大家有所帮助,由于涉及面广,错误难免,希望各位朋友及时的指正。在原子光谱元素分析中,应用最广的是原子吸收光谱分析和原子发射光谱分析,而原子发射光谱一个很重要的方面就是电感耦合等离子体光源的应用,他的出现开辟了原子发射光谱仪新的里程碑,从目前分析状况看二者在分析能力方面可谓平分秋色,各具特色,对于原子吸收光谱仪的采购已做过简单的讨论,在此再对电感耦合等离子体发射光谱仪的采购作些简单的讨论,希望对大家的采购能有点借鉴。对于采购ICP-OES前应该考虑最基本的问题大家可以参考《原子吸收光谱仪采购浅谈》中的第2段描述,本文主要针对能够影响ICP-OES分析性能的一些重要的部件做个简单的讨论。在采用ICP-OES分析中,影响其分析性能的主要有高频发生器、分光系统、等离子体观测方式、进样系统和检测系统、软件平台,因此本文的讨论主要是从这几个方面展开。1.高频发生器:高频发生器是ICP-OES的基础核心部件,是为等离子体提供能量的,通过工作线圈给等离子体输送能量,并维持ICP光源稳定放电,要求其具有高度的稳定性和不受外界电磁场干扰。从功率输出方式上可以分为自激和它激式两类,自激式高频发生器(VARIAN、PE、GBC、JY、LEEMAN、斯派克、岛津及国内厂家生产的ICP-OES均使用这个)能将稳定的直流电流变成具有一定周期的交流电流后,不需要外加交变信号控制就可以产生交变输出.该RF线路简单,造价低廉,调试容易,当震荡电路参数变化时能自动补偿阻抗的少量变化等优点.缺点是功率输出效率低,震荡频率稳定度不高。它激式发生器(目前仪器我掌握的资料只有热电公司的)是由石英晶体控制频率,必须外加交换信号才能产生交变输出,具有功率输出效率高,振荡频率稳定,易实现频率自动控制等优点,缺点是线路复杂,成本高。目前商品化的仪器的振荡频率主要使用27.12MHz和40.68MHz的,理论上讲震荡频率大的,维持等离子体的功率相对就小点,冷却气用量相对少点,产生的趋肤效应也强,便于形成等离子体中心进样通道(一般不会引起等离子体的熄灭),但在实际使用商品化仪器分析时27.12MHz和40.68MHz其分析性能并没有特别明显的差别,特别是在检出限和测定精度方面几乎没有差异。高频发生器的另一个指标就是其功率,因为功率是影响发射线强度和背景强度的主要因素,采购时主要考虑其大小可调性和分析样品的性质,一般范围至少也在800-1500W,对于普通水样品类一般采用800-1200W基本可以满足正常分析需要,而以有机物溶剂为基体的样品分析一般需要较高的功率来维持等离子体的正常运行,其实作为各种ICP-OES的光源,目前的发展技术应该是比较成熟的,在采购时主要考虑一下下列指标就可以了:反射功率至少要小于10W,功率波动不能大于0.1%(假如输出功率有0.1%的飘逸,发射强度就能产生超过1%的变化,目前高档仪器的这个方面做的是比较好的,有的可以低1-2个数量级的),频率稳定性要优于0.1%。2.等离子体观测方式及尾焰处理技术:目前主要使用轴向、径向、双向观测方式,在整体思路设计上各有特色和重点,不过双向观测融合了轴向、径向的特点,具有一定的灵活性,增加了测定复杂样品的适应性。所谓径向观测的就是以炬管垂直观测的,其分析性能在测定易受易电离元素(如:碱金属、PDF文件使用pdfFactoryPro试用版本创建碱土金属)干扰和基体效应影响元素时要远远高于水平观测的,且其分析最佳观察高度的选择的余地也要比水平的好,但由于在等离子体发射光谱中,其发射信号的强度主要取决于光源通道的长度,而垂直观测的受狭缝高度的限制,其光源通道的长度远比水平观测的有限,从而造成其检出限相对于水平观测的高数倍,同时采用垂直观测时检测器不可避免的接受到环形区较强的辐射背景,降低了测定时的信背比。而水平观测的可以接受比较强的发射信号,保证较低的检出限和背景强度(即背景等效浓度比较小),具有较高的信背比及较低检出限的优点,但由于炬管是水平放置,外层石英管的延伸部分要包含整个等离子体焰炬,容易使炬管沾污的缺点,同时,由于产生的热量不能及时排除,RF功率也不能太高。相对与二者的缺点,两个都可以弥补对方的不足,因此仪器厂家开发了双向观测的技术(如:热电、利曼等公司的产品),他们在水平观测的基础上通过平面反射镜来实现垂直观测功能,比较好的融合了垂直和水平观测的缺点,是一大发展方向,对于采用水平炬管的需要进行等离子体尾焰消除技术来减少分析过程中尾焰背景的影响,目前商品化的仪器主要通过加长炬管、冷锥接口、空气吹扫切割来实现,采用加长炬管(如热电的)主要是考虑加大进样通道,集中热流和增强原子化、增加等离子体的惰性气氛,尽量减少空气分子背景的影响,冷锥接口(如VARIAN的700系列等)是在加长炬管的基础上,增加了个水冷却取样锥,其消除尾焰完全、减少了分子背景产生的结构背景、线性范围较好、等离子体稳定,对于高盐类或有机样品分析会造成锥口的污染,需要及时清晰维护,空气吹扫切割(如PE各系列、LEEMANPRODIGY)是通过空压机产生的高速气流来切割掉尾焰,其尾焰消除的稳定性和完全程度受切割气流的影响,特别是由于采用了空气切割,对分析紫外波长的元素灵敏度有损失。3.分光系统:分光系统也是采购考察的重点对象,直接影响ICP-OES的分析性能,一般要求其波长范围至少在180-870nm(这个主要根据分析元素的需要来确定,对于测定紫外波长的元素,可以考虑采购分析元素响应的波长范围),由于测定的稳定性、重复性和对紫外波长测定的灵敏度,一般对光室都采用驱气或真空方式的恒温保护措施,光室是否进行特殊处理将影响光谱仪开机预热时间的长短和测定的精密度,至于分光系统中其他的及色散元件在《原子吸收光谱仪采购浅谈》已做了简单的探讨,在此主要针对目前各厂家比较常用的做个介绍。3.1、平面光栅光谱仪:主要用于单道扫描ICP-OES上,目前大部分厂家的顺序扫描的都采用这个,如:VARIANLiberty、海光SPS8000(使用两个光栅,其中凹面光栅做前置光谱分离,平面光栅做主单色器)、日立306、JY-ULTAMA2、比较特别的是GBCIntegraXL采用双光路即两个单色器),作为顺序扫描的ICP-OES,是按顺序一个一个的测定元素的,一般采用步进马达或电磁驱动转动光栅(还有一种是转动检测器的,如LEEMANPROFILE,采用中阶梯光栅),在远离分析波长时采用高速转动,接近分析波长后,慢慢跨越并超过波峰位置,同时进行积分来测定的,由于具有不可避免的机械和热不稳定性,不能直接转到波峰进行强度测定,寻峰扫描是在一定波长范围内进行的,测定信号必须要高出背景信号数倍才能出峰,在测定痕量物质或有较大邻近线干扰时可能出现误寻峰的问题,与目前所谓的“全谱”相比具有很大的价格优势和测定灵活性,从理论上讲可以用于元素所有谱线的分析,适合与基体复杂多变和非标准样品的分析,更适合做仪器分析研究工作的人员,当然他也有一个弱点就是分析时间相对较长、氩气用量大,因此这两个参数也是考察单道扫描ICP的重要指标,目前对于元素分析时间并没有一个统一的认识,建议采购时作为临时考察对象。计量要求平面光栅光谱仪波长示值误差在±0.05nm,波长重复性不大于0.01nm,对于实际分辨率要求其能完全分开Fe263.132nm和Fe263.105nm或者能分开Hg313.155nm和Hg313.184nm即可。PDF文件使用pdfFactoryPro试用版本创建.2、凹面光栅光谱仪:此类型光谱仪以前主要用于制造多通道ICP发射光谱,也属于多元素同时测定类型,其具有结构简单,使用光学元件少,光栅本身兼色散、准直、成像功能,不存在色差,但象散比较严重,凹面光栅光谱仪没有使用反射镜,光损失小,在短波方向进行准确分析是他的特点(如:斯派克的可以测定130-190nm的),可以用于测定波长小于190nm的元素,但是由于其狭缝、通道有限和固定,因此限制了分析的灵活性和同时测定多元素的数目。3.3、中阶梯光栅光谱仪:中阶梯光栅光谱仪是采用较低色散的棱镜或其他色散元件做为辅助色散元件,安装在中阶梯光栅的前或后来形成谱线色散方向和谱级散开方向正交(即交叉色散),形成二维色散图象。他主要依靠高级次、大衍射角来、更大的光栅宽度来获得高分辨率的,这是目前较高水平光谱仪所用的分光系统,配合CCD、SCD、CID检测器可以实现“全谱”多元素“同时”分析,也有采用中阶梯光栅的顺序扫描的光谱仪,如:LEEMANPROFILE。相对于平面光栅有很高的分辨率和色散率,由于减少了机械转动不稳定性的影响,其重复性、稳定性将有很大的提高,而相对于凹面光栅光谱仪在同时具备多元素分析的情况下,可以灵活的选择分析元素和分析波长,目前各厂家的“全谱”基本都采用此类型的,只是光路设计和使用光学器件数量上略有不同,ThermoIRISINTREPIDⅡ的光路是先通过棱镜后再用光栅色散,VARIAN700系列的光路是先通过棱镜再到光栅后再通过棱镜形成二维色散,而LeemanProdigy的光路是采用两个棱镜在光栅前后分别色散的,PEOPTIMA的采用两个光栅、两个检测器,经第一个光栅分光后光路分紫外和可见两路,紫外光路再投到第二个光栅上,而可见的经过棱镜分光,最后到达SCD检测器,整个光路系统使用了10多个光学器件,是目前所见使用最多光学器件的仪器。对于中阶梯光栅光谱仪光学分辨率要求在200nm处至少小于0.009nm(如:LEEMANProdigy、ThermoIRISINTREPIDⅡ为小于0.005nm、VARIAN700小于0.007nm、PEOPTIMA4000\5000为小于0.006nm、2000为小于0.009nm),当然上述资料是各厂家的宣传资料,实际的大家可以考察,看能否完全分辨开Cu213.598nm和P213.618nm两条谱线,或者用Mo的半峰宽来考察实际分辨率。光学系统还有一个参数那就是杂散光,一般要求在As193.696nm处用10000ppm钙测定其BEC要小于3ppm(在这方面Thermo、LEEMAN、VARIAN、PE的指标都表现的很好)。4.进样系统:进样系统主要包括气体、液体、固态进样系统,这里只讨论常用液体进样装置,进样系统性能的好坏直接影响分析测定的灵敏度、精密度、检出限,进样系统主要包括雾化器和雾化室,他们共同影响进样系统的性能,目前的商品仪器基本上都配备了好几种可选的进样系统,采购者可根据自己的需要来选择适合自己的,下面针对不同的部件进行简单的说明:4.1雾化器对于雾化器的总体要求是分析液滴直径要小、产生的气溶胶均匀、雾化效率高,看了部分厂家的仪器样本,各厂家都有不同的规格满足不同的分析对象。4.1.1同心气动雾化器又称迈恩哈德雾(Meinhard)化器,一般是由硼硅酸盐玻璃吹制的(对于使用氢氟酸的有专门材料制作的,可以向厂家咨询),是ICP光谱分析中最常用的雾化器,他是利用通过小孔的高速气流形成的负压进行提升和雾化液体的,其主要指标是提升量和雾化效率,提升量就是单位时间内雾化器所提取液体的量,对于现在的商品仪器,可以通过调节蠕动泵来调节提升量,雾化效率是雾化成细雾的溶液量在提升液体总量中所占的比例,普通的玻璃同心气动雾化器的雾化效率大约在3-5%,玻璃同心气动雾化器主要缺点是对于PDF文件使用pdfFactoryPro试用版本创建高盐份的分析比较敏感,由于溶液物理性质的变化会在喷口处沉积和降低提升量,从而影响分析性能,在此方面厂家也有不少技术改动,比方以水润湿氩气、改变喷嘴的几何形状等,以降低盐沉积效应的影响。4.1.2交叉雾化
本文标题:高频电感耦合等离子体发射(ICP-OES)光谱仪采购浅谈
链接地址:https://www.777doc.com/doc-464996 .html