您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 2019年贵州省安顺市中考数学试卷
第1页(共8页)2019年贵州省安顺市中考数学试卷一、选择题(本大题10个小题,每小题3分,共30分)1.(3分)2019的相反数是()A.﹣2019B.2019C.﹣D.2.(3分)中国陆地面积约为9600000km2,将数字9600000用科学记数法表示为()A.96×105B.9.6×106C.9.6×107D.0.96×1083.(3分)如图,该立体图形的俯视图是()A.B.C.D.4.(3分)下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.a6÷a2=a3D.(a+b)2=a2+b25.(3分)在平面直角坐标系中,点P(﹣3,m2+1)关于原点对称点在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.65°7.(3分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()第2页(共8页)A.∠A=∠DB.AC=DFC.AB=EDD.BF=EC8.(3分)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.B.2C.D.9.(3分)如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M、N两点;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE.则下列说法错误的是()A.∠ABC=60°B.S△ABE=2S△ADEC.若AB=4,则BE=4D.sin∠CBE=10.(3分)如图,已知二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于C点,OA=OC.则由抛物线的特征写出如下结论:①abc>0;②4ac﹣b2>0;③a﹣b+c>0;④ac+b+1=0.其中正确的个数是()第3页(共8页)A.4个B.3个C.2个D.1个二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)函数y=的自变量x的取值范围是.12.(4分)若实数a、b满足|a+1|+=0,则a+b=.13.(4分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2,扇形的圆心角θ=120°,则该圆锥母线l的长为.14.(4分)某生态示范园计划种植一批蜂糖李,原计划总产量达36万千克,为了满足市场需求,现决定改良蜂糖李品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划平均亩产量为x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为.15.(4分)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于A、B两点,连接OA、OB,已知△OAB的面积为4,则k1﹣k2=.16.(4分)已知一组数据x1,x2,x3,…,xn的方差为2,则另一组数据3x1,3x2,3x3,…,3xn的方差为.第4页(共8页)17.(4分)如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.18.(4分)如图,将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是.三、解答题(本大题共8个小题,满分88分,解答应写出必要的文字说明或演算步骤)19.(8分)计算:(﹣2)﹣1﹣+cos60°+()0+82019×(﹣0.125)2019.20.(10分)先化简(1+)÷,再从不等式组的整数解中选一个合适的x的值代入求值.21.(10分)安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?22.(10分)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在第5页(共8页)指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若ax=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=logaN,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:loga(M•N)=logaM+logaN(a>0,a≠1,M>0,N>0),理由如下:设logaM=m,logaN=n,则M=am,N=an,∴M•N=am•an=am+n,由对数的定义得m+n=loga(M•N)又∵m+n=logaM+logaN∴loga(M•N)=logaM+logaN根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式;(2)求证:loga=logaM﹣logaN(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log69+log68﹣log62=.23.(12分)近年来,在习近平总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霾天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾天气了解程度的统计表对雾霾天气了解程百分比第6页(共8页)度A.非常了解5%B.比较了解15%C.基本了解45%D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生共有,n=;(2)扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.24.(12分)(1)如图①,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB,AD,DC之间的等量关系;(2)问题探究:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.25.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,第7页(共8页)E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cosC=,求AE的长.26.(14分)如图,抛物线y=x2+bx+c与直线y=x+3分别相交于A,B两点,且此抛物线与x轴的一个交点为C,连接AC,BC.已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MC|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.第8页(共8页)2019年贵州省安顺市中考数学试卷参考答案一、选择题(本大题10个小题,每小题3分,共30分)1.A;2.B;3.C;4.B;5.D;6.C;7.A;8.D;9.C;10.B;二、填空题(本大题共8个小题,每小题4分,共32分)11.x≥2;12.1;13.6;14.﹣=20;15.8;16.18;17.;18.2019;三、解答题(本大题共8个小题,满分88分,解答应写出必要的文字说明或演算步骤)19.;20.;21.;22.4=log381;2;23.400;35%;126;24.AD=AB+DC;25.;26.;声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/8/2913:13:59;用户:wxx;邮箱:wxx0328@163.com;学号:1179730
本文标题:2019年贵州省安顺市中考数学试卷
链接地址:https://www.777doc.com/doc-4670275 .html