您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 2.4.2平面向量数量积的坐标表示、模、夹角
复习引入.cos;0)2(cos)1(2babababaaaaaaababa;或我们学过两向量的和与差可以转化为它们相应的坐标来运算,那么怎样用呢?的坐标表示和baba在直角坐标系中,已知两个非零向量a=(x1,y1),b=(x2,y2),如何用a与b的坐标表示a∙bYA(x1,y1)aB(x2,y2)bOij∵a=x1i+y1j,b=x2i+y2jX①_____②______③______④_____单位向量i、j分别与x轴、y轴方向相同,求1100两个向量的数量积等于它们对应坐标的乘积的和.1212abxxyy在坐标平面xoy内,已知=(x1,y1),=(x2,y2),则ab求·例1:已知=(1,√3),=(–2,2√3),abba解:·=1×(–2)+√3×2√3=4;ab1、平面向量数量积的坐标表示练习:则),4,3(),1,3(),2,1(cba____)(cba(13,26)____)(cba(3,4);或aaaaaa2)1(221221221122222))),,(),2,),,()1(yyxxAByxByxAyxayxayxa((则、(设)两点间的距离公式(;或则设向量的模2、向量的模和两点间的距离公式用于计算向量的模即平面内两点间的距离公式.求||,||例1:已知=(1,√3),=(–2,2√3),abab=√12+(√3)2=2,a=√(–2)2+(2√3)2=4,b(3,3)ab||ab22||3(3)1223ab3、两向量夹角公式的坐标运算bababacos1800则),(的夹角为与设0.0.cos)180(0),,(),,222221212222212121212211yxyxyxyxyyxxbayxbyxa,其中则,夹角为与且(设向量夹角公式的坐标式:121222221122cosxxyyxyxy例1:已知a=(1,√3),b=(–2,2√3),求a与b的夹角θ.cos===,42×4a·bab12θ∴=60ºθ=(x1,y1),=(x2,y2),则abbababacos1800则),(的夹角为与设0baba垂直0),,(),,21212211yyxxbayxbyxa则(设4、两向量垂直的坐标表示0abab例2:已知a=(5,0),b=(–3.2,2.4),求证:(a+b)⊥b.证明:∵(a+b)·b=a·b+b2=5×(–3.2)+0×2.4+(–3.2)2+2.42=0∴(a+b)⊥b12120xxyy与垂直:ab=(x1,y1),=(x2,y2),则ab练习:且起点坐标为(1,2)终点坐标为(x,3x),则,),4,3(abab______b41155(,)例3:已知A(1、2),B(2,3),C(2,5),求证ΔABC是直角三角形证明:∵AB=(21,32)=(1,1)AC=(21,52)=(3,3)∴ABAC=1╳(3)+1╳3=0∴AB⊥AC∴ΔABC是直角三角形注:两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。ABCO如证明四边形是矩形,三角形的高,菱形对角线垂直等.XY(0//)ababb0abab12210xyxy12120xxyy5、两向量垂直、平行的坐标表示=(x1,y1),=(x2,y2),则ab例4:已知,当k取何值时,1).与垂直?2).与平行?平行时它们是同向还是反向解:1)这两个向量垂直解得k=192)得此时它们方向相反。例5(1)已知=(4,3),向量是垂直于的单位向量,求.abab3434(1)(,)(,)5555bb答案:或.//)2,1(,102的坐标,求,且)已知(ababa.//)2,1(,102的坐标,求,且)已知(ababa(2)(2,22)(2,22)或.43)5,(),0,3(3的值求,的夹角为与,且)已知(kbakba.43)5,(),0,3(3的值求,的夹角为与,且)已知(kbakba(3)5k(1)掌握平面向量数量积的坐标表示,即两个向量的数量积等于它们对应坐标的乘积之和;(2)要学会运用平面向量数量积的坐标表示解决有关长度、角度及垂直问题.小结:=(x1,y1),=(x2,y2),则ab1212xxyyab12210xyxyab2.ab3.ab||||cosab0ab12120xxyy5.cos||||abab224.(1)||aa2||aa22xy121222221122xxyyxyxy(,)axy其中作业:1.课本P108A组9,10,11.
本文标题:2.4.2平面向量数量积的坐标表示、模、夹角
链接地址:https://www.777doc.com/doc-4673723 .html