您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2008年高考试题——数学理(全国卷2)
绝密★启用前【考试时间:6月7日15:00—17:00】2008年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ(选择题)卷和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页,第Ⅱ卷3至4页。考试结束后,将本试卷和答题卡一并交回。满分150分,考试用时120分钟。第Ⅰ卷(选择题,共60分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码的准考证号码、姓名、考场号、座位号及科目,在规定的位置贴好条形码。2.每小题选出答案后,用2B铅笔吧答题卡上对应题目的答案涂黑。如需改动用橡皮擦擦干净后,再选涂其它答案标号。答在试卷上的答案无效。参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B)如果事件A、B相互独立,那么P(A·B)=P(A)·P(B)如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率Pn(k)=CknPk(1-P)n-k本卷12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。一.选择题(1)设集合}23{mZmM,}31{nZnN,则NMA.}1,0{B.}1,0,1{C.}2,1,0{D}2,1,0,1{(2)设a,b∈R且b≠0,若复数3bi)(a是实数,则A.223abB.223baC.229abD.229ba球的表面积公式S=42R其中R表示球的半径,球的体积公式V=334R,其中R表示球的半径(3)函数xxxf1)(的图像关于A.y轴对称B.直线y=-xC.坐标原点对称D.直线y=x(4)若)1,(1ex,xlna,xln2b,x3lnc,则A.cbaB.bacC.cabD.acb(5)设变量x,y满足约束条件:2,22,xyxxy则yxz3的最小值为:A.-2B.-4C.-6D.-8(6)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为A.299B.2910C.2919D.2920(7)4611xx的展开式中x的系数是A.-4B.-3C.3D.4(8)若动直线ax与函数xxfsin)(和xxgcos)(的图像分别交于M、N两点,则MN的最大值为A.1B.2C.3D.2(9)设1a,则双曲线22221(1)xyaa的离心率e的取值范围是A.)2,2(B.)5,2(C.)5,2(D.)5,2((10)已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE、SD所成的角的余弦值为A.31B.32C.33D.32(11)等腰三角形两腰所在直线的方程分别为02yx和047yx,原点在等腰三角形的底边上,则底边所在直线的斜率为A.3B.2C.31D.21(12)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于A.1B.2C.3D.2第Ⅱ卷(非选择题,共90分)二.填空题:(本大题共4个小题,每小题5分,共20分。)把答案填在答题卡上。(13)设向量a=(1,2),b=(2,3).若向量λa+b与向量c=(4,-7)共线,则λ=.(14)设曲线axey在点(0,1)处的切线与直线012yx垂直,则a=.(15)已知F为抛物线C:xy42的焦点,过F且斜率为1的直线交C于A、B两点.设FBFA.则FA与FB的比值等于.(16)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行.类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①;充要条件②.(写出你认为正确的两个充要条件)三.解答题:本大题共6个小题,共70分。解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分10分)在△ABC中,135cosB,54cosC.(Ⅰ)求Asin的值;(Ⅱ)求△ABC的面积233ABCS,求BC的长.(18)(本大题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率为410999.01.(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).(19)(本大题满分12分)如图,正四棱柱1111DCBA-ABCD中,421ABAA,点E在上且ECEC31.(Ⅰ)证明:CA1平面BED;(Ⅱ)求二面角B-DE-A1的大小.(20)(本大题满分12分)设数列}{na的前n项和为nS.已知aa1,nnnSa31,*Nn.(Ⅰ)设nnnSb3,求数列}{nb的通项公式;(Ⅱ)若nnaa1,*Nn,求a的取值范围.(21)(本大题满分12分)设椭圆中心在坐标原点,A(2,0)、B(0,1)是它的两个顶点,直线)0(kkxy与AB相交于点D,与椭圆相较于E、F两点.(Ⅰ)若DFED6,求k的值;求四边形AEBF面积的最大值.(22)(本大题满分12分)设函数xxxfcos2sin)(.(Ⅰ)求)(xf的单调期间;(Ⅱ)如果对任何0x,都有axxf)(,求a的取值范围.2008年高考试题答案(理)一、选择题123456789101112BACCDDBBBCAC提示:1、}1,0,1{},21|{ZxxxNM2、22323223330,03,)3(3)(abbbbaibbaababia3、)(xf为奇函数4、cabxxe0ln1115、当22yx时,83minyxZ6、29201330310330320CCCCP7、xxxxx2446)1()1()1()1(的系数为32214CC8、2|)4sin(|2|cossin|||aaaMN9、22)1()1(222aaaaae=1)1(2a110a1)1(2tu在)1,0(为单增函数,52u52e10、连结AC、BD相交于O点,连结OE,则OE//SO,所以AEO为所求角,设AB=2,则OE=1,AE=3,AO=2,33cosAEOEAEO11、设底边斜率为K,直线02yx与047yx的斜率分别为71,131,3,717111kkkkk,又原点在底边上,所以K=312、1O与2O的公共弦为AB,球心为O,AB中点为C,则四边形COOO21为矩形,所以3||||||,1||,2|||,|||2221ACOAOCOCACACOAOCOO二、填空题13、20)2(7)32(4)32,2(ba;14、axaey',当0x时2'aay;15、设AB所在直线方程为1xy,0444122yyxyxy222y223222222||||FBFA;16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形。注:上面给出了四个充要条件。如果考生写出其他正确答案,同样给分。三、解答题17.解:(Ⅰ)由5cos13B,得12sin13B,OO2CO1由4cos5C,得3sin5C.所以33sinsin()sincoscossin65ABCBCBC.·················································5分(Ⅱ)由332ABCS△得133sin22ABACA,由(Ⅰ)知33sin65A,故65ABAC,·····················································································································8分又sin20sin13ABBACABC,故2206513AB,132AB.所以sin11sin2ABABCC.·································································································10分18.解:各投保人是否出险互相独立,且出险的概率都是p,记投保的10000人中出险的人数为,则4~(10)Bp,.(Ⅰ)记A表示事件:保险公司为该险种至少支付10000元赔偿金,则A发生当且仅当0,·········································································································································2分()1()PAPA1(0)P4101(1)p,又410()10.999PA,故0.001p.·····························································································································5分(Ⅱ)该险种总收入为10000a元,支出是赔偿金总额与成本的和.支出1000050000,盈利10000(1000050000)a,盈利的期望为100001000050000EaE,························································9分由43~(1010)B,知,31000010E,4441010510EaE4443410101010510a.0E≥4441010105100a≥1050a≥15a≥(元).故每位投保人应交纳的最低保费为15元.············································································12分19.解法一:依题设知2AB,1CE.(Ⅰ)连结AC交BD于点F,则BDAC.由三垂线定理知,1BDAC.································································································3分在平面1ACA内,连结EF交1AC于点G,由于122AAACFCCE,故1RtRtAACFCE△∽△,1AACCFE,CFE与1FCA互余.于是1ACEF.1AC与平面BED内两条相交直线BDEF,都垂直,所以1AC平面BED.············································································································6分(Ⅱ)作GHDE,垂足为H,连结1AH.由三垂线定理知1AHDE,故1AHG是二面角1ADEB的平面角.·········································································8分223EFCFCE,23CECFCGEF,2233EGCECG
本文标题:2008年高考试题——数学理(全国卷2)
链接地址:https://www.777doc.com/doc-4675983 .html