您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2008年高考试题——数学理(山东卷)
2008年普通高等学校招生全国统一考试(山东卷)数学(理)第Ⅰ卷(共60分)参考公式:球的表面积公式:S=4πr2,其中R是球的半径.如果事件A在一次试验中发生的概率是p,那么n次独立重复试验中事件A恰好发生k次的概率:Pn(k)=Cknpk(1-p)n-k(k=0,1,2,…,n).如果事件A、B互斥,那么P(A+B)=P(A)+P(B).如果事件A、B相互独立,那么P(AB)=P(A)·P(B).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M1234,,,aaaa且12312,,,Maaaaa的集合M的个数是(A)1(B)2(C)3(D)4解析:本题考查集合子集的概念及交集运算。集合M中必含有12,aa则12124,,,MaaMaaa或(2)设z的共轭复数是z,或z+z=4,z·z=8,则zz等于(A)1(B)-i(C)±1(D)±i解析:本题考查共轭复数的概念、复数的运算。可设2zbi,由8zz得248,2.bb2222.88izziz(3)函数lncos()22yxx的图象是解析:本题考查复合函数的图象。lncos22yxx是偶函数,可排除B,D;由cosx的值域可以确定。(4)设函数1fxxxa的图象关于直线x=1对称,则a的值为(A)3(B)2(C)1(D)-1解析:本题考查分段函数的图象。C,D可排除,对于A,B可验证。(5)已知4cos()sin365,则7sin()6的值是(A)-532(B)532(C)-54(D)54解析:本题考查三角函数变换与求值。334cos()sincossin36225,134cossin225,7314sin()sin()sincos.66225(6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9π(B)10π(C)11π(D)12π解析:考查三视图与几何体的表面积。从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为22411221312.S(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(A)511(B)681(C)3061(D)4081解析:本题考查古典概型。基本事件总数为31817163C。选出火炬手编号为13(1)naan,11a时,由1,4,7,10,13,16可得4种选法;12a时,由2,5,8,11,14,17可得4种选法;13a时,由3,6,9,12,15,18可得4种选法。4441.1716368P(8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为(A)304.6(B)303.6(C)302.6(D)301.6解析:本题考查茎叶图、用样本数字特征估计总体特征。11582602473.610(9)(X-31x)12展开式中的常数项为(A)-1320(B)1320(C)-220(D)220解析:本题考查二项式定理及其应用412121233112121231()(1)(1),rrrrrrrrrrrTCxCxxCxx993101212121110(1)220.321TCC(10)设椭圆C1的离心率为135,焦点在X轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为(A)1342222yx(B)15132222yx(C)1432222yx(D)112132222yx解析:本题考查椭圆、双曲线的标准方程对于椭圆1C,13,5,ac曲线2C为双曲线,5,c4a,3,b标准方程为:22221.43xy(11)已知圆的方程为X2+Y2-6X-8Y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为(A)106(B)206(C)306(D)406解析:本题考查直线与圆的位置关系22(3)(4)25xy,过点(3,5)的最长弦为10,AC最短弦为2225146,BD1206.2SACBD(12)设二元一次不等式组0142,080192yxyxyx,所表示的平面区域为M,使函数y=ax(a>0,a≠1)的图象过区域M的a的取值范围是(A)[1,3](B)[2,10](C)[2,9](D)[10,9]解析:本题考查线性规划与指数函数如图阴影部分为平面区域M,显然1a,只需要研究过(1,9)、(3,8)两种情形。19a且38a即29.a第Ⅱ卷(共90分)161412108642y=f(x)3,82,101,9二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右边的程序框图,若p=0.8,则输出的n=4.解析:本题考查程序框图1110.8248,因此输出4.n(14)设函数2()(0)fxaxca.若)()(010xfdxxf,0≤x0≤1,则x0的值为33.解析:本题考查微积分定理的应用1123120000013()|,333afxdxaxcaxcxcaxcx(15)已知a,b,c为△ABC的三个内角A,B,C的对边,向量m=(1,3),n=(cosA,sinA).若m⊥n,且acosB+bcosA=csinC,则角B=6π.解析:本题考查解三角形3cossin0AA,,3AsincossincossinsinABBACC,2sincossincossin()sinsinABBAABCC,.2C(16)若不等式|3x-b|<4的解集中的整数有且仅有1,2,3,则b的取值范围为(5,7).解析:本题考查绝对值不等式401443,433343bbbxb,解得57b三、解答题:本大题共6小题,共74分.(17)(本小题满分12分)已知函数f(x)=)0,0)(cos()sin(3πxx为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为.2π(Ⅰ)美洲f(8π)的值;(Ⅱ)将函数y=f(x)的图象向右平移6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.解:(Ⅰ)f(x)=)cos()sin(3xx=)cos(21)sin(232xx=2sin(x-6π)因为f(x)为偶函数,所以对x∈R,f(-x)=f(x)恒成立,因此sin(-x-6π)=sin(x-6π).即-sinxcos(-6π)+cosxsin(-6π)=sinxcos(-6π)+cosxsin(-6π),整理得sinxcos(-6π)=0.因为>0,且x∈R,所以cos(-6π)=0.又因为0<<π,故-6π=2π.所以f(x)=2sin(x+2π)=2cosx.由题意得.2,222 = 所以 故f(x)=2cos2x.因为.24cos2)8(f(Ⅱ)将f(x)的图象向右平移个6个单位后,得到)6(xf的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到)64(f的图象.).32(cos2)64(2cos2)64()(ffxg所以 当2kπ≤32≤2kπ+π(k∈Z),即4kπ+≤32≤x≤4kπ+38(k∈Z)时,g(x)单调递减.因此g(x)的单调递减区间为384,324kk(k∈Z)(18)(本小题满分12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。假设甲队中每人答对的概率均为32,乙队中3人答对的概率分别为21,32,32且各人正确与否相互之间没有影响.用ε表示甲队的总得分.(Ⅰ)求随机变量ε分布列和数学期望;(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).(Ⅰ)解法一:由题意知,ε的可能取值为0,1,2,3,且所以ε的分布列为ε0123P2719294278ε的数学期望为Eε=.227839429212710解法二:根据题设可知)32,3(B~因此ε的分布列为2323),32,3(.3,2,1,0,32)321()32()(3323EBkCCkPkkkkk所以~因为(Ⅱ)解法一:用C表示“甲得2分乙得1分”这一事件,用D表示“甲得3分乙得0分”这一事件,所以AB=C∪D,且C、D互斥,又.278)32()3(,94)321()32()2(,92)321(32)1(,271)321()0(3333232231330CPCPCPCP,34)213131()32()(,310213132213231213132)321()32()(52324232CDPCCP由互斥事件的概率公式得24334334354310)()()(54DPCPABP.解法二:用Ak表示“甲队得k分”这一事件,用Bk表示“已队得k分”这一事件,k=0,1,2,3由于事件A3B0,A2B1为互斥事件,故事P(AB)=P(A3B0∪A2B1)=P(A3B0)+P(A2B1).=.24334)32213121(32)2131()32(2212323223CC(19)(本小题满分12分)将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:a1a2a3a4a5a6a7a8a9a10……记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1.Sn为数列{bn}的前n项和,且满足=nNnnSSbb221=(n≥2).(Ⅰ)证明数列{nS1}成等差数列,并求数列{bn}的通项公式;(Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当91481a时,求上表中第k(k≥3)行所有项和的和.(Ⅰ)证明:由已知,1,n=1nb-,)1(2nnn≥2.(Ⅱ)解:设上表中从第三行起,每行的公比都为q,且q>0.因为1213121278,2所以表中第1行至第12行共含有数列{an}的前78项,故a82在表中第13行第三列,因此282134.91abq又132,1314b所以q=2.记表中第k(k≥3)行所有项的和为S,则(1)2(12)2(12)1(1)12(1)kkkkbqSqkkkk(k≥3).).1(22122.12,2112111.2111.1,2111,12,1)(2,,121111111211212nnhnSbnnSnnSSabSSSSSSSSSSSSSbbbSSSbbnnnnnnnnnnnnnnnnnnnnnnn时,所以 当即 )(+=
本文标题:2008年高考试题——数学理(山东卷)
链接地址:https://www.777doc.com/doc-4675985 .html