您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2013年杭州市中考数学试卷及答案(Word解析版)
第1页共14页2013年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(2013杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6C.(1﹣m)(1+m)=m2﹣1D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(2013杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=180°C.AB=ADD.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(2013杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10B.﹣40C.10D.40考点:完全平方公式.专题:计算题.第2页共14页分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算2010年~2011年GDP增长率,2011年~2012年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2012年和2008年GDP,可判断出B的正误;根据条形统计图可得2010年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2008~2012年杭州市的GDP逐年增长.解答:解:A.2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故此选项错误;B.2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;C.2010年杭州市的GDP超过到5500亿元,故此选项错误;D.2008~2012年杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2013杭州)如图,设k=(a>b>0),则有()A.k>2B.1<k<2C.D.第3页共14页考点:分式的乘除法.专题:计算题.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(2013杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.第4页共14页考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(2013杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④B.错误的命题是②③④C.正确的命题是①②D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.第5页共14页分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(2013杭州)32×3.14+3×(﹣9.42)=.考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(2013杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(2013杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;第6页共14页∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则=分杭州市某4所高中最低录取分数线统计表学校2011年2012年杭州A中438442杭州B中435442杭州C中435439杭州D中435439考点:算术平均数.分析:先算出2011年的平均最低录取分数线和2012年的平均最低录取分数线,再进行相减即可.解答:解:2011年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2012年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|=(平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.第7页共14页分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,第8页共14页当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90
本文标题:2013年杭州市中考数学试卷及答案(Word解析版)
链接地址:https://www.777doc.com/doc-4681128 .html