您好,欢迎访问三七文档
彩色多普勒血流成像(ColorDopplerFlowImaging,CDFI),是在频谱多普勒(SpectralDoppler)技术基础上发展起来的利用多普勒原理进行血流显像的技术,有关频谱多普勒的理论,在本书的有关章节已有论述。与频谱多普勒相比,彩色多普勒血流成像是多普勒技术在医学领域应用的重大发展,从只能逐点取样测血流速度发展到用伪彩色编码信号显示血流的流动,使多普勒技术能更直观地显示血流的流动方向、流动速度、流动范围、血流性质、有无返流、分流等。彩色多普勒血流成像技术于l982年由日本的Namekawa、Kasai及美国的Bommer最先研制成功,日本Aloka公司于1982年生产第一台彩色多普勒血流成像仪,日本尾本良三最早报道了此技术在心血管领域的应用。此后,彩色多普勒血流成像技术应用范围逐渐扩大,1986年开始用于周围血管血流成像,1987年开始用于腹部器官,1988年开始用于颅脑血流成像。现在,彩色多普勒血流成像以及在此基础上发展的能量多普勒(PowerDoppler)血流成像,已成为超声诊断不可缺少的技术。彩色多普勒血流成像的重要性在于它能无创、实时地提供有关血流的信息,而这是X线、核医学、CT、MRI以及PET等所做不到的。第1节工作原理彩色多普勒血流成像的显示方式属于二维技术。血流的彩色信号叠加在二维超声显像图上。现在的超声诊断仪都用自相关技术作信号处理,以获得血流的二维多普勒信号。彩色多普勒血流成像与频谱多普勒不同,每帧图像有32~l28条扫描线,每条扫描线有250~300个取样点,每帧图像内有10,000个以上的取样数据,为了实时成像,必须在几十毫秒内处理这些数据,因此必须采用比傅立叶(Fourier)分析更快的自相关技术。一、自相关技术自相关技术能在约2ms内处理大量的多普勒频移数据,并计算出血流速度、血流方向和速度方差,但须注意所计算的是每一瞬间内若干频率信号的平均速度,不能得出取样部位瞬时流速的分布范围,因此也不能得到瞬时的最大流速。自相关技术包括两个信号间相位差的检测,即检测接连发射的两个相邻超声脉冲回声信号的相位差,从求得相位差的公式可以计算检测位置的血流速度,从相位差的正、负性可了解血流的方向。由于超声诊断目前都用兆赫(MHz)以上的超声频率,因为高频信号的处理比较困难,所以通过一个正交检测器把回声信号转换成低频范围。经过正交检测器和相位差检测的回声信号,最后通过自相关检测处理,才能得到血流信号的显示。二、MTI滤波器MTI滤波器即Motiontargetindicationfilter,目的是滤掉非血流运动产生的回声信号,例如血管壁、瓣膜等产生的低频运动,这些低频运动强大,可干扰血流运动的信号,因此在正交检测器和自相关检测器之间,插人MTI滤波器,以滤掉非血流产生的低频信号。MTI滤波器具有不同的频率响应特性,以用于对静脉血流、心脏和大血管血流的检测,对静脉血流用低频段频率响应高的MTI调节,对心脏和大血管,则用对低频段频率响应抑制的MTI调节。三、彩色增强器彩色多普勒血流成像技术是以彩色显示血流信号,伪彩色编码由红蓝绿三种基本颜色组成。目前均设定朝向探头的血流以红色表示,背离探头的血流以蓝色表示。彩色的亮度(辉度)与血流速度的高低成正比,速度高,彩色亮度强,速度低,彩色亮度弱,例如朝向探头的血流速度低时,信号为暗红色,背离探头的血流速度低时,信号为暗蓝色,如血流速度很低,彩色信号的亮度很弱即颜色很暗,从荧光屏上分辨困难。因此,设置彩色增强器,以增大低速血流的彩色信号的亮度。彩色信号的亮度与血流速度增快成正比,直至流速达到Nyquist(奈奎斯特)极限。为了表达更快速的血流速度,有时用三种颜色表示血流速度的快慢,朝向探头的血流用从暗红到明亮的红色信号表示,如血流速度更快,就从红色变为黄色(红色与绿色的混合),黄色再变绿色,三种颜色并存表示不同的流速。背离探头的血流,更快的速度以青色、绿色来表示。超声仪器上把彩色图(Colormap)设置为两种,一种只有红、黄及蓝、青两种彩色,用于非心血管系的血流检测,另一种在每个方向上有两至三种彩色,用于心血管系的血流检测。彩色增强功能虽然使彩色信号的亮度随血流速度增快而增强,但实际上这种功能主要是对低速血流,提高低速血流的彩色信号亮度。当血流速度低于或达到Nyquist速度时,彩色信号的亮度增强就达到饱和,血流速度再增大,彩色信号的亮度也不再增强。另一方面,非血流运动产生的低速运动信号,可用MTI滤波器删去,即达到彩色抑制的目的。四、彩色多普勒血流成像技术的种类彩色多普勒血流成像技术的种类有两种。除传统的彩色多普勒成像技术外,还有一种为混合彩色多普勒或称聚合彩色多普勒(ConvergentColorDopplor,CCD),此种技术综合了彩色多普勒血流成像与彩色多普勒能量图的优势,可以显示血流速度的快、慢与血流方向,又可以用彩色多普勒能量图显示低速、低流量的血流。有关彩色多普勒能量图的原理,本书有专章叙述,在此不再重复。第2节检查方法一、仪器调节1.彩色图(ColorMap)的设定心、腹两用的超声仪,彩色图都有两种设定,以双色显示血流速度快、慢的用于腹部、外围血管的检测,用彩色的亮度表示血流速度的快、慢,如朝向探头的血流为暗红→鲜亮红色→黄色。以三色显示血流速度快、慢的用于心血管,除红、黄及蓝、青色外,对朝向探头的血流以绿色表示最快的速度,对背向探头的血流以绿色表示最快的速度,可减少混叠(Aliasing)现象的出现。2.彩色图速度标尺(Scale)的设定速度标尺的设定须与被检测的血流速度相匹配,对高速的血流如速度标尺设定偏低,很容易出现彩色信号的混叠;对低速血流如速度标尺偏高,则低速血流(例如静脉血流)可能不被显示或显示不完全。3.壁滤波器的调节一般有1~4档,滤波频率随档的数字增大而增大,高通滤波用于高速血流检测,可以“切除呼吸等低频运动的干扰。低通滤波用于低速血流的检测,便于低速血流的显示,不至于被“切除”。4.零位基线的调节零位基线向下移动,使朝向探头的血流可测量的范围增大,即速度标尺数据增大,反之亦然。零位基线的移动,有两种用途:①增大对血流速度的测量范围。②消除彩色信号混叠(或称倒错、翻转)现象,当血流速度超过Nyquist极限时,即超过速度标尺所能测量的最大值后,彩色信号逆转或翻转变为反方向的颜色,为了克服彩色信号的混叠(倒错),可移动零位基线,扩大速度标尺的测量范围。通过移动零位基线,可使速度测量扩展至Nyquist极限的两倍。5.取样容积调节用彩色多普勒血流成像技术检测血管,如彩色的血流信号“溢出”血管外.除与增益调节过高有关,还由于取样容积过大使彩色信号描绘的血流失真。彩色多普勒技术显示的帆流大小,与血管的内径并不完全相等,不能用测量主彩色血流信号的粗细来代表血管的内径。应恰当调节取样容积的大小,使血管内的彩色血流信号完整地充盈血管,但又不“溢出”到血管外,对低速、低流量的血流,可适当增大取样容积,以便于“捕捉”血流。6.彩色信号的增益调节增大增益调节,可使彩色的亮度增大,便于观察,但增益增大后,噪音信号也被放大,干扰对彩色血流信号的观察。对低速低流量的血流检测,增益应适当增大,以便这些血流能清晰地显示,但同时应注意避免因增益过大而出现噪音信号,影响对血流的观察,甚至造成假象。7.脉冲重复频率的设定(PRF)脉冲重复频率(PRF)是探头在单位时间内重复发射超声的次数,脉冲重复频率越高,能检测的血流速度越快,但检测深度越浅。彩色多普勒使用的是脉冲多普勒技术,脉冲多普勒关于脉冲重复频率与检测深度、检测血流速度的关系可应用于彩色多普勒技术。发射超声到达被检测对象(检测深度)、反射回声被探头接收,都需要一定的时间,设检测深度为D,超声速度为C,则超声由体表至检测深度D所需的往返时间T为:T=2D/C因此,PRF与T的关系为PRF=1/TPRF与检测深度的关系,因脉冲重复频率必须大于被检测物体多普勒频移(Fd)的两倍,才能显示其频移大小和方向:Fd1/2PRF避免发生频率失真的最小PRF为:PRF=2Fd脉冲重复频率的1/2就是Nyquist频率极限,即在脉冲重复频率内所能检测的最大速度,脉冲重复频率与检测深度(R)间的关系为:PRF=C/2R从上式可知,增大PRF,使检测深度变小,减低PRF,可使检测深度增大。在超声仪上,调节取样容积大小可用以调节脉冲重复频率,取样容积的宽度为取样深度处的超声束直径,其长度可调,取样容积长度就是脉冲持续时间,脉冲持续时间短,脉冲重复频率就增高。8.取样框大小的调节电子相控阵探头的扇形扫查角度,在有些超声仪是可变的,例如30°、45°(50°)、60°、90°(80°)。当使用超声仪的彩色多普勒血流成像这一功能时,有一取样框用以观察感兴趣区的血流,取样框的大小也可调节。扇扫角度或取样框大小(主要调节取样框的角度)的调节,主要与图像的帧速有关。帧速即帧频的快慢,在心血管检测时非常重要,帧速太慢,时间分辨力下降,直接影响彩色血流成像的清晰度。有关帧速的公式如下:nTNF=1上式中N为组成一帧图像的扫描线数,T为发射脉冲的间隔时间(T=1/PRF),n为在同一方向上发射超声脉冲多普勒的数量,F为帧速。因此,如想提高帧速,可通过降低T即提高脉冲重复频率PRF来达到,但PRF提高后,能检测的最大深度变小。降低n和N,即减少单位时间内发射脉冲多普勒的数量和减少每帧图像的扫描线数,后者即为缩小扇扫的角度或取样框的角度。9.探头频率的选择在脉冲重复频率的设定中提及脉冲重复频率与检测最大深度和最大检测速度的关系公式:PRF=C/2R=2Fd合并上述两式:Fd=C/4R多普勒频移的经典公式为:Fd一2f。VCosθ/C将Fd=C/4R代人多普勒频移公式得下式:RV=C2/8f0。从上式可知:发射超声频率f。与能检测的最大深度(R)及最大速度(V)成反比,即超声频率越高,能检测的最大深度及速度都降低。因此,检测深部的血管需用较低的超声频率,例如2.0~3.5MHz,检测高速血流也需用较低的超声频率,成人心血管常用2.O~3.5MHz的探头,表浅部位或探头距病变部位距离近,例如甲状腺、乳腺及经直肠检测前列腺、经阴道检测子宫及附件时,可用高至6.0~7.0MHz的超声频率,对低速血流在能达到被检测血流的深度的前提下,也应使用尽可能高的超声频率。10.余辉(Persistence)的调节余辉在二维超声成像时是指帧(图像)重叠,用在彩色多普勒血流成像时,对低速度、低流量的血流,可使之显示清晰,便于观察。二、检查方法彩色多普勒血流成像的检查方法,与二维超声成像的检查方法相同。彩色多普勒血流成像是在二维超声成像的基础上,把血流的伪彩色编码图像叠加在二维超声图像上,因此,对各脏器、各系统的切面图的运用,完全与二维超声成像相同。在完成二维超声成像后,启动仪器上彩色多普勒血流成像的功能,进行上述的仪器调节,就可完成检查。三、彩色多普勒血流成像的意义即从彩色多普勒血流成像中,可观察了解血流的有关特点及其意义。1.显示出二维超声成像中未能检出的血流比较小的动、静脉血管,用二维超声常常不能显示其血管壁,非心血管系的其他系统、器官,尽管位置比较表浅,也常见这种情况。例如颅内血管,目前只有大脑中动脉的片断在部分患者中可显示其血管壁。用彩色多普勒血流成像,可以使3mm以下的小血管的血流成像,因此可以检出实质脏器肿瘤如肝、肾等肿瘤的血流。2.鉴别二维超声成像的管道结构是否血管用彩色多普勒血流成像检查,如有血流成像,就是血管,而非其他结构,这对腹腔器官、外周血管的检测尤其具有诊断意义。例如胆道末端梗阻,肝内胆管扩张明显,需与肝内血管鉴别,用彩色多普勒血流成像,可很容易识出肝内的血管。3.识别血流成像的血管是动脉或静脉动脉血流特征是有时相的差别,即收缩期血流充盈血管,且血流速度快,舒张期血流速度低,舒张早期可能有血流翻转,舒张中期及末期无血流充盈,外周动脉这些特征尤其明显。静脉血流为持续存在,但速度低,血流速度受呼吸影响大。在彩色多普勒血流成像时,如
本文标题:彩色多普勒原理
链接地址:https://www.777doc.com/doc-4689264 .html