您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 二维随机变量及独立性--教学设计
ADMINISTRATOR[日期]概率论与数理统计教学设计1概率论与数理统计教学设计课程名称概率论与数理统计课时100分钟任课教师刘涛专业与班级财务管理B1601---B1606课型新授课课题二维随机变量及其分布教材分析“二维随机变量及其分布”属于教材第三章内容,位于教材的第75页至第93页.是在前一章“一维随机变量及其分布”的概念提出的基础上,对两个及两个以上的随机变量进行描述。可以说,二维随机变量及其分布是对前一章一维随机变量内容的总结以及综合应用。学习目标知识与技能了解二维随机变量的背景来源;了解二维随机变量的基本思想;掌握二维随机变量的适用范围、基本步骤及其具体运用。过程与方法通过日常生活中常常出现的实例的引入,引导学生分析、解决问题,培养学生将实际问题转化为数学问题的能力,培养学生提出、分析、理解问题的能力,进而发展整合所学知识解决实际问题的能力。情感态度与价值观通过介绍概率论与数理统计在实际生活中的运用,激发学生自主学习的兴趣,也培养了学生的创新意识和探索精神。教学分析教学内容1.二维随机变量及联合分布函数定义2.二维离散型随机变量及联合概率函数3.二维连续型随机变量及联合概率密度4.二维随机变量的边缘分布5.随机变量的相互独立性教学重点二维离散型、连续随机变量及其分布,相互独立性教学难点二维连续型随机变量及其分布ADMINISTRATOR[日期]概率论与数理统计教学设计2教学方法与策略板书设计前50分:1.引例3.二维离散变量2.联合分布函数定义4.二维连续变量后50分:5.边缘分布6.相互独立性教学时间设计1.引导课题…………2分钟2.学生活动…………3分钟3.二维随机变量及联合分布函数定义……15分钟4.二维离散型随机变量及联合概率函数……10分钟5.二维连续型随机变量及联合概率密度……20分钟6.二维随机变量的边缘分布……20分钟7.随机变量的相互独立性……25分钟8.课堂小结…………5分钟教学手段多媒体播放教学视频、PPT演示与板书演练书写相结合。教学进程教学意图教学内容教学理念引出课题(2分钟)某地区气候状况需要考虑温度、湿度、风力等多个随机变量;研究股票的投资价值,要考虑股票的市盈率、市净率、资本报酬率等多个指标。激发学生的兴趣,让学生体会数学来源于生活。学生活动(3分钟)问题细化,让学生们具体考虑:日常生活中还有哪些实例符合以上特征。并总结其特点。从日常生活的经验和常识入手,调动学生的积极性。二维随机变量及联合分布函数定义(15分钟)1、二维随机变量若对于试验的样本空间8/中的每个试验结果,有序变量都有确定的一对实数值与e相对应,即,,则称为二维随机变量或二维随机向量.2、联合分布函数二维随机变量的联合分布函数规定为随机变量取值不大于实数的概率,同时随机变量取值e(,)XY()XXe()YYe(,)XY(,)XYXxYADMINISTRATOR[日期]概率论与数理统计教学设计3不大于实数的概率,并把联合分布函数记为,即.3.联合分布函数的性质(1);(2)是变量(固定)或(固定)的非减函数;(3),;(4)是变量(固定)或(固定)的右连续函数;(5).例题:设二维随机变量(,)XY的联合分布函数为(,)(arctan)(arctan)FxyABxCy求:常数,,(,)ABCxy解:由分布函数(,)Fxy的性质得:lim(arctan)(arctan)()()122lim(arctan)(arctan)()(arctan)02lim(arctan)(arctan)(arctan)()02xyxyABxCyABCABxCyABCyABxCyABxC由以上三式可解得:21,,22ABC教师给予引导,回归到刚提出的问题上。y(,)Fxy(,)(,),,FxyPXxYyxy0(,)1Fxy(,)Fxyxyyx(,)0,(,)0limlimxyFxyFxy(,)0,(,)1limlimxxyyFxyFxy(,)Fxyxyyx121222211211(,)(,)(,)(,)(,)PxXxyYyFxyFxyFxyFxyADMINISTRATOR[日期]概率论与数理统计教学设计4二维离散型随机变量及联合概率函数(10分)4.二维离散型随机变量及联合概率函数如果二维随机变量仅可能取有限个或可列无限个值,那么,称为二维离散型随机变量.二维离散型随机变量的分布可用下列联合分布率来表示:其中,.也可用下边的概率分布表表示:XY1yjy()iPXx1x11p1jp1jjpix1ipijpijjp()jPYy1iipijip1通过引导及具体的例题展现二维离散型随机变量。(,)XY(,)XY(,)XY(,),,1,2,,ijijPXaYbpij0,,1,2,,1ijijijpijpADMINISTRATOR[日期]概率论与数理统计教学设计5二维连续型随机变量及联合概率密度(20分)5.二维连续型随机变量及联合概率密度(1)对于二维随机变量(X,Y)的分布函数,如果存在一个二元非负函数,使得对于任意一对实数有成立,则为二维连续型随机变量,为二维连续型随机变量的联合概率密度.(2)二维连续型随机变量及联合概率密度的性质①;②;③设为二维连续型随机变量,则对任意一条平面曲线,有;’④在的连续点处有;⑤设为二维连续型随机变量,则对平面上任一区域有例.求在D上服从均匀分布的随机变量(X,Y)的密度函数和分布函数,其中D为x轴、y轴及直线y=2x+1围城的三角形区域。解:如图,区域D为直角三角形RT△OAB,其面积为:1111224OABS所以由均匀分布的定义可得,(X,Y)的联合密度函数为:4,(,)(,)0,xyDfxy其他下面来求(X,Y)的分布函数,通过引导及具体的例题展现二维连续型随机变量。(,)Fxy(,)fxy(,)xy(,)(,)xyFxyfstdtds(,)XY(,)fxy(,)0,,fxyxy(,)1fxydxdy(,)XYL((,))0PXYL(,)fxy2(,)(,)Fxyfxyxy(,)XYD((,))(,)DPXYDfxydxdyADMINISTRATOR[日期]概率论与数理统计教学设计6(,)(,),(,)xyFxyfstdtdsxy(1)当102xy或时,(,)=0Fxy(2)当10,0212xyx时2102(,)=442yxyFxydtdsxyyy(3)当10,212xyx时212102(,)4441xxFxydsdyxxADMINISTRATOR[日期]概率论与数理统计教学设计7(4)当0,01xy时02102(,)=42yyFxydtdsyy(5)当0,1xy时021102(,)=41xFxydsdt综上所述,ADMINISTRATOR[日期]概率论与数理统计教学设计8二维随机变量的边缘分布(20分)222042(,)=44121xyyyFxyxxyy10210,021210,2120,010,1xyxyxxyxxyxy或6.二维随机变量的边缘分布设(,)Fxy为二维随机变量(,)XY的联合分布函数,称()(,),()PXxPXxYx为X的边缘分布函数,并记为()XFx直观可以看到(,)lim(,)lim(,)(,)yyPXxYPXxYyFxyFx因此,边缘分布函数()XFx也可表示为()(,)XFxFx类似地,关于Y的边缘分布函数为()()(,)lim(,)lim(,)(,)YxxFyPYyPXYyPXxYyFxyFy7、二维离散型随机变量的边缘分布律设(,)XY为二维离散型随机变量,ijp为其联合概率函数(,1,2,)ij,称概率为随机变量的边缘概率函数,记为iP并有12()(,)=,(1,2,)iiiiiijijjPPXxPXxYppppi称概率(),(1,2,)jPYbj为随机变量Y的边缘概率函数,记为jP,并有12()(,)=,(1,2,)jjjjjijijiPPYyPXYyppppj用表格形式表示为:X1x2xix边缘概率1p2pipY1y2yjy与一维变量进行比较。总结特点。()(1,2,)iPXaiXADMINISTRATOR[日期]概率论与数理统计教学设计9随机变量的相互独立性(25分)边缘概率1p2pjp8、二维连续型随机变量(,)XY的边缘概率密度设为二维连续型随机变量的联合概率密度,由的边缘分布函数的定义有()()(,)=(,)xXFxPXxPXxYfxydydx()x因此称()(,),()Xfxfxydyx为X的边缘概率密度函数.类似地,Y的边缘概率密度函数为()(,),()Yfyfxydxy9、随机变量的相互独立性.(1)定义:设,XY为随机变量,如果对于任意实数,xy,事件,XxYy是相互独立的,即(,)()()PXxYyPXxPYy则称,XY相互独立。(2)如果与的联合分布函数等于,XY的边缘分布函数之积,即(,)()()PXxYyPXxPYy,那么,称随机变量与相互独立.(3)设为二维离散型随机变量,与相互独立的充分必要条件为(,)()()ijijijPXxYyPXxPYypp(,1,2,ij)即ijijppp(,1,2,ij)多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.(4)设为二维连续型随机变量,则与相互独立的充分必要条件为如果.那么,与(,)fxyXXY(,)()(),,XYFxyFxFyxy对一切XY(,)XYXY(,)XYXY(,)()(),XYfxyfxfy在一切连续点上.221212(,)~(,,,,)XYNXADMINISTRATOR[日期]概率论与数理统计教学设计10相互独立的充分必要条件是.多维随机变量的相互独立性可类似定义.即多维随机变量的联合分布函数等于每个随机变量的边缘分布函数之积,多维连续型随机变量的独立性有与二维相应的结论.课堂小结(5分钟)通过与一维随机变量及其分布进行比较总结相关二维随机变量及其分布的特点。通过对课堂内容的小结,让学生对本节课的内容连贯化、系统化。作业布置作业布置通过概率论与数理统计教学平台微信发布1.仔细阅读课本第75页至第93页;2.浏览概率论与数理统计教学平台中相关内容。明确告知学生作业要求。教学评价“二维随机变量及其分布”属于教材第三章内容,位于教材的第75页至第93页.是在前一章“一维随机变量及其分布”的概念提出的基础上,对两个及两个以上的随机变量进行描述。可以说,二维随机变量及其分布是对前一章一维随机变量内容的总结以及综合应用。在本节课的课程教学中,采用“案例教学法”,通过实例吸引学生注意力,以问题为导向,以分析为重点,以应用为巩固拓展,引导学生思考、解决问题,进而使学生较快理解与掌握矩估计的基本思想和基本求解步骤。在课堂教学中要让学生多思、多练、多总结,并安排作业,让学生在脱离教师带领下自己思考做题。实践证明,在本节的教学过程中,学生均表现出较高的学习积极性和情感投入,通过交流互动说明学生已大致掌握本节内容的基本思想和基本求解步骤。Y0
本文标题:二维随机变量及独立性--教学设计
链接地址:https://www.777doc.com/doc-4696259 .html