您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 综合/其它 > 机械优化作业-复合型法
机械优化设计实验报告(一)题目:用复合形法求约束优化问题2221645minxxxf;06422211xxg;01013xg的最优解。基本思路:在可行域中构造一个具有K个顶点的初始复合形。对该复合形各顶点的目标函数值进行比较,找到目标函数值最大的顶点(即最坏点),然后按一定的法则求出目标函数值有所下降的可行的新点,并用此点代替最坏点,构成新的复合形,复合形的形状每改变一次,就向最优点移动一步,直至逼近最优点。(二)复合形法的计算步骤1)选择复合形的顶点数k,一般取nkn21,在可行域内构成具有k个顶点的初始复合形。2)计算复合形个顶点的目标函数值,比较其大小,找出最好点xL、最坏点xH、及此坏点xG..3)计算除去最坏点xH以外的(k-1)个顶点的中心xC。判别xC是否可行,若xC为可行点,则转步骤4);若xC为非可行点,则重新确定设计变量的下限和上限值,即令CLxbxa,,然后转步骤1),重新构造初始复合形。4)按式HCCRxxxx计算反射点xR,必要时改变反射系数α的值,直至反射成功,即满足式HRRjxfxfmjxg;,2,1,0,。然后xR以取代xH,构成新的复合形。5)若收敛条件211211kjLjxfxfk得到满足,计算终止。约束最优解为:LLxfxfxx*,*。(三)复合形法程序框图见下图:开始输入n,k,ε形成初始复合形的k个顶点xj(j=1,2,……,k)将各定点的目标函数值和坐标按目标函数值的大小排序计算出去xH后的各顶点中心HjxkxkjjC,)(111?xC可行?xR可行?结束一次坏点xG代替最坏点xH计算各顶点的目标函数值f(xj)(j=1,2,……,k)求反射点HCCRxxxxRHxx?HRxfxf5.0?1010CLxbxaLLffxx**,否是是是是否否否否是(四)源程序如下:/*输入值选择n=2,k=3,本程序可以处理n为2或3,k为3或4的情况*/#includestdio.h#includestdlib.h#includetime.h#includemath.h#defineE01e-5/*复合形法收敛控制精度*/double**apply(int,int);/*申请矩阵空间*/doublef(double*);/*目标函数*/double*g(double*);/*约束函数*/booljudge(double*);/*可行点的判断*/intmain(){intn,k;inti,j,k1;intl;doubletemporary;doublerestrain;/*收敛条件*/doublereflect;/*反射系数*/srand((unsigned)time(NULL));printf(请输入目标函数的维数n:);/*输入已知数据*/scanf(%d,&n);printf(请输入复合形的顶点数k:);scanf(%d,&k);double**x=apply(k,n);/*存放复合形顶点*/double*y=(double*)calloc(k,sizeof(double));/*存放目标函数值*/double*p=(double*)calloc(3,sizeof(double));/*存放约束函数值*/double*a=(double*)calloc(n,sizeof(double));/*存放设计变量的下限*/double*b=(double*)calloc(n,sizeof(double));/*存放设计变量的上限*/double*x_c=(double*)calloc(n,sizeof(double));/*存放可行点中心*/double*x_r=(double*)calloc(n,sizeof(double));/*存放最坏点的反射点*/printf(本程序中的所有输入,两个数之间用空格隔开,然后按enter键时不要长时间的按,否则,可能会出错\n);printf(请输入选定的第一个可行点x1(包含%d个数):,n);for(i=0;in;i++)scanf(%lf,*x+i);printf(请输入初选变量的下限a(包含%d个数):,n);for(i=0;in;i++)scanf(%lf,a+i);printf(请输入初选变量的上限b(包含%d个数):,n);for(i=0;in;i++)scanf(%lf,b+i);printf(输出输入结果为:\nn=%d,k=%d,x1=(,n,k);/*输出已知数据*/for(i=0;in-1;i++)printf(%.5lf,*(*x+i));printf(%.5lf)\na=(,*(*x+n-1));for(i=0;in-1;i++)printf(%f,*(a+i));printf(%.5lf),b=(,*(a+n-1));for(i=0;in-1;i++)printf(%f,*(b+i));printf(%.5lf)\n,*(b+n-1));L1:for(i=1;ik;i++)/*随机得到其余(k-1)个可行点*/for(j=0;jn;j++)*(*(x+i)+j)=*(a+j)+(double)(rand()%10000)/10000*(*(b+j)-*(a+j));l=1;for(i=1;ik;i++)/*找出可行点的个数l,并把可行点放在前l个位置上*/if(judge(*(x+i))){for(j=1;jk;j++)if(!judge(*(x+j))){for(k1=0;k1n;k1++){temporary=*(*(x+i)+k1);*(*(x+i)+k1)=*(*(x+j)+k1);*(*(x+j)+k1)=temporary;}break;}l++;}for(i=0;il-1;i++)/*把前l个可行点按目标函数值从大到小排序*/for(j=i+1;jl;j++)if(f(*(x+i))f(*(x+j)))for(k1=0;k1n;k1++){temporary=*(*(x+i)+k1);*(*(x+i)+k1)=*(*(x+j)+k1);*(*(x+j)+k1)=temporary;}for(i=0;in;i++)/*求可行点中心*/*(x_c+i)=0;for(i=0;il;i++)for(j=0;jn;j++)*(x_c+j)+=*(*(x+i)+j);for(i=0;in;i++)*(x_c+i)/=l;if(!judge(x_c))/*判断可行点中心是否可行*/{for(i=0;in;i++){*(a+i)=*(*(x+l-1)+i);*(b+i)=*(x_c+i);}gotoL1;}else{for(i=l;ik;i++)/*将不可行点可行化*/do{for(j=0;jn;j++)*(*(x+i)+j)=*(x_c+j)+0.5*(*(*(x+i)+j)-*(x_c+j));}while(!judge(*(x+i)));L2:for(i=0;ik-1;i++)/*将可行点按目标函数值从大到小排序*/for(j=i+1;jk;j++)if(f(*(x+i))f(*(x+j)))for(k1=0;k1n;k1++){temporary=*(*(x+i)+k1);*(*(x+i)+k1)=*(*(x+j)+k1);*(*(x+j)+k1)=temporary;}restrain=0;/*求收敛条件*/for(i=0;ik;i++)restrain+=(f(*(x+i))-f(*(x+k-1)))*(f(*(x+i))-f(*(x+k-1)));restrain=sqrt(1.0/(k-1)*restrain);if(restrainE0)/*判断收敛条件*/{printf(\n求得约束最优点为:();for(i=0;in;i++)printf(%.5f,*(*(x+k-1)+i));printf()\n目标函数的最优解为:%.5f\n,f(*(x+k-1)));return0;}else{L3:for(i=0;in;i++)/*计算除去最坏点*x外的(k-1)个顶点的中心*/*(x_c+i)=0;for(i=1;ik;i++)for(j=0;jn;j++)*(x_c+j)+=*(*(x+i)+j);for(i=0;in;i++)*(x_c+i)/=k-1;reflect=1.3;L4:for(i=0;in;i++)/*求反射点*/*(x_r+i)=*(x_c+i)+reflect*(*(x_c+i)-*(*x+i));if(!judge(x_r)){reflect*=0.5;gotoL4;}elseif(f(x_r)f(*x)){for(i=0;in;i++)*(*x+i)=*(x_r+i);gotoL2;}elseif(reflect=1e-10){for(i=0;in;i++)*(*x+i)=*(*(x+1)+i);gotoL3;}else{reflect*=0.5;gotoL4;}}}}double**apply(introw,intcol)/*申请矩阵空间*/{inti;double*x=(double*)calloc(row*col,sizeof(double));double**y=(double**)calloc(row,sizeof(double*));if(!x||!y){printf(内存分配失败!);exit(1);}for(i=0;irow;i++)*(y+i)=x+i*col;returny;}doublef(double*x)/*目标函数*/{return(*x-5)*(*x-5)+4*(*(x+1)-6)*(*(x+1)-6);}double*g(double*x)/*约束函数*/{double*p=(double*)calloc(3,sizeof(double));if(!p){printf(内存分配失败!);exit(1);}*p=64-(*x)*(*x)-(*(x+1))*(*(x+1));*(p+1)=*(x+1)-*x-10;*(p+2)=*x-10;returnp;}booljudge(double*x)/*可行点的判断*/{inti;double*p=(double*)calloc(3,sizeof(double));p=g(x);for(i=0;i3;i++)if(*(p+i)0)break;if(i==3)returntrue;elsereturnfalse;}(五)运行结果如下:
本文标题:机械优化作业-复合型法
链接地址:https://www.777doc.com/doc-4703148 .html