您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 段正敏主编《线性代数》习题解答
线性代数习题解答1张应应胡佩2013-3-1目录第一章行列式....................................................................................................................1第二章矩阵......................................................................................................................22第三章向量组的线性相关性..........................................................................................50第四章线性方程组..........................................................................................................69第五章矩阵的相似对角化..............................................................................................91第六章二次型................................................................................................................114附录:习题参考答案...........................................................................................................1291教材:段正敏,颜军,阴文革:《线性代数》,高等教育出版社,2010。1第一章行列式1.填空题:(1)3421的逆序数为5;解:该排列的逆序数为00235t.(2)517924的逆序数为7;解:该排列的逆序数为0100337t.(3)设有行列式2311187001234564021103152D=)(ija,含因子543112aaa的项为-1440,0;解:(23154)31223314554(1)(1)526831440taaaaa(24153)41224314553(1)(1)506810taaaaa所以D含因子543112aaa的项为-1440和0.(4)若n阶行列式)(,)(ijijnaDaaD则1na;解:行列式D中每一行可提出一个公因子1,()1()1nnijijDaaa.(5)设328814412211111)(xxxxf,则0)(xf的根为1,2,-2;解:()fx是一个Vandermonde行列式,()(1)(2)(2)(21)(22)(21)0fxxxx的根为1,2,-2.(6)设321,,xxx是方程03qpxx的三个根,则行列式132213321xxxxxxxxx0;解:根据条件有332123123123()()()()xpxqxxxxxxxxxxxaxxxx比较系数可得:1230xxx,123xxxq2再根据条件得:311322333xpxqxpxqxpxq原行列式333123123123=3()33()0xxxxxxpxxxqq.(7)设有行列式100132xxx=0,则x=1,2;解:2231032(1)(2)001xxxxxxx1,2x.(8)设)(xf444342343331242221131211aaaxaaxaaxaaxaaa,则多项式)(xf中3x的系数为0;解:按第一列展开11112121313141()fxaAaAaAxA,112131,,AAA中最多只含有2x项,含有3x的项只可能是41xA12134141222433343123413242233132234122433(1)aaxxAxaxaxaaxxaaaaaaxaaaaaa41xA不含3x项,()fx中3x的系数为0.(9)如果330020034564321x=0,则x=2;解:12346543122(512)(63)000265330033xxx2x.3(10)000000000000dcba=-abcd;解:将行列式按第一行展开:1400000000(1)0000000000abbacabcdcdd.(11)如果121013cba=1,则111425333cba=1;解:1323323133301302524121111111TrrAArraabcabcbc.(12)如333231232221131211aaaaaaaaa=2,则333232312322222113121211222222222222aaaaaaaaaaaa=-16,332313231332221222123121112111323232aaaaaaaaaaaaaaa=-4,3212000332313322212312111aaaaaaaaa=-4;解:1112131121312122231231222321233132331323332TaaaaaaAaaaAaaaaaaaaa1112121332122222312231223313232331221232222222222222222288016aaaaaaaaaaaaA41121112131122212223212123121231323132333122311232323232323232aaaaaaaaaaaaaaa1223122123224TA11213114122232132333000212423TaaaAaaaaaa按第一行展开(-1).(13)设n阶行列式D=0a,且D中的每列的元素之和为b,则行列式D中的第二行的代数余子式之和为=ab;解:11121111211112121222121212111=nnnnnnnnnnnnnnnnaaaaaaaaaaaabbbbaaaaaaaaa每行元素加到第二行212220nbAAAa按第二行展开212220,0nbAAA且21222naAAAb实际上,由上述证明过程可知任意行代数余子式之和12,1,2,,iiinaAAAinb.(14)如果44434234333224232214131211000aaaaaaaaaaaaa=1,则24231211444342343332242322000aaaaaaaaaaaaa=-1,443424433323423222aaaaaaaaa=111a;解:令222324323334424344aaaBaaaaaa,则5111213142223241111113233341142434401(1)10,000aaaaaaaaBaBaaaaaaa且2223243233344111114243441112232400(1)10aaaaaaaBaBaaaaaaa223242233343112434441TaaaaaaBBaaaa.(15)设有行列式1001321xx,则元素1的余子式21M=231x,元素2的代数余子式12A=1210101;(16)设3214214314324321D=)(ija,ijijaA表示元素的代数余子式,则44342414432AAAA0;解:方法一:14243444234AAAA可看成D中第一列各元素与第四列对应元素代数余子式乘积之和,故其值为0.方法二:11424344412312342234034134124AAAA推论.(17)设cdbaacbdadbcdcbaD=)(ija,ijijaA表示元素的代数余子式,则44342414AAAA0;6解:1424344411011abccbdAAAAdbcabd推论4.(18)设6000000000000002000230023402345)(xxxxxxf,则5x的系数为6;解:方法一:54255254320543243200432032000()66(1)(1)63200200002000000000000000006xxxxxfxxxxxxxx方法二:()fx只有一项非054321615243342516610255543204320032000()12000000000000006(1)(1)66txxxfxaaaaaaxxxx综上所述:5x的系数为6.(19)设1112121222121112111121212222122212120mmmmmmnmnmnnnnnnnmaaaaaaaaaDbbbcccbbbcccbbbccc,且111212122212mmmmmmaaaaaaaaaa7111212122212nnnnnnbbbbbbbbbb,则D=1mnab;解:方法一:令111212122212mmmmmmaaaaaaAaaaa,111212122212nnnnnnbbbbbbBbbbb则1AODABabCB,211mnmnOADABabBC证明:根据行列式性质2和5,将行列式A变成下三角行列式,得到:11112121222212121212mmmmmmmmmmaaaaaaaaaAaaaaaaaaaa行列式1D、2D的变换和行列式A的变换完全相同,得到:1212121111211112121222212221212mmmmnmnnnnmnnnnaaaaaaDcccbbbcccbbbcccbbb81212122111211112121222212221212mmmnmnmnnnnnnnmaaaaaaDbbbcccbbbcccbbbccc分别将1D、2D第一次按第一行展开(2a变成第一行),第二次按第二行展开(3a变成第一行),……,总共进行m次第一行展开,得到:112mDaaaBABab;11111121211111nnnmnmnmDaaaBABab证毕.方法二:设ijmmAa,pqnnBb,ijmnmnAODdCB其中:,1:,1
本文标题:段正敏主编《线性代数》习题解答
链接地址:https://www.777doc.com/doc-4708809 .html