您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 第四章-活断层的工程地质研究
第四章活断层的工程地质研究4.1基本概念及研究意义活断层(activefault)一般理解为目前还在持续活动的断层,或在历史时期或近期地质时期活动过、极可能在不远的将来重新活动的断层。后一种情况也可称为潜在活断层(potentiallyactivefault)。断层在目前持续活动的标志,当然是判定活断层的无可争议的证据。如何判定潜在活断层则有各种不同的标准。人类历史时期有过活动记录的当然是潜在活断层。对近期地质历史时期却有不同的理解与限定。有人将之限于全新世(即最近11000a以内),有人则限于最近35000a(以14C确定绝对年龄的可靠上限)之内,更有人限于晚更新世(最近100,000a或500,000a)之内,或者根据近期地质历史时期(例如第四纪期间)有重复活动来判定。从工程使用时间尺度和断层活动时间测年的准确性来考虑,活动时间上限不宜太长,应以前两者为适当。可能有重新活动的不远的将来,一般理解为重要建筑物如大坝、原子能电站等的使用年限之内,约为100a一200a。活动断层有不同的活动特性:持续不断缓慢蠕动的称为蠕滑(creepslip)或稳滑,(stableslip);间断地、周期性突然错断的为粘滑(stickslip),粘滑常伴有地震,是活断层的主要活动方式。一条长大活断层的不同区段可以有不同的活动方式。活断层的活动强度主要以其错动速率来判定。但活断层错动速率是相当缓慢的,两盘相对位移平均达到lmm/a,已属相当强的活断层。世界上最著名的活断层,为美国的圣安德烈斯断层,两盘间年平均最大相对位移也只有5cm。所以,即使是现今还在蠕动的断层,也不能用一般的观测方法取得它活动的标志,而需采用重复精密水准测量(水准环测或三角、三边测量)。近年还采用全球定位系统(GPS,GlobalPositioningSystem)或超长基线(VIBI)测量法测得两盘相对位移。近年研究证明,断层位移往往伴有小地震,所以用密集地震台网精确测定小震震中沿断层线分布(参见图6—23),也是判定断层活动的可靠标志。有些间断活动的断层,在其非活动期,断层线两侧既无相对位移,沿断层也无小地震产生。但经过一定时期之后,在断层线上的某一点会发生较强地震,有时还伴以位移达几米的地表错断。这类断层可从历史上地震和断层错动记录或从过去的强震震中沿断层分布取得其活动标志。但即使在我国这样—个历史悠久的国家,地震历史记录也不过只有3000a左右,仪器确切测定震中更是最近几十年来才实现的。所以判定断层活动性主要还是要依靠地质标志,即断层近期活动在最新沉积层中、在断层物质中或在地形地貌上留下来的证据。通过这些证据的详细研究,可以判定断层是否活动,其活动方式和规模及是否伴有地震。通过多种绝对年龄测定,还可判定断层的活动时间、速率及重复活动的时间间隔或重复活动周期。对活断层进行工程地质研究的重要意义有以下两个方面。其一是断层的地面错动及其附近的伴生的地面变形,往往会直接损害跨断层修建或建于其邻近的建筑物。其次是活断层多伴有地震,而强烈地震又会使建于活断层附近的较大范围内的建筑物受到损害。活断层错动直接损害建筑物的例子迄今为止为数不多。在我国则有1976年唐山地震时的长达8km的地表错断。它呈北30°东方向由市区通过,最大水平错距3m,垂直断距0.7一lm,错开了道路、围墙、房屋、水泥地面等一切地面建筑物。宁夏石咀山红果子沟一带的活断层,也将明代(约400a前)长城边墙水平错开1.45m(右旋),且西升东降垂直断距约0.9m。日本神户附近的六甲地区活断层对建筑物的影响也是一个较好例子。津田调查了六甲山南侧平原和阶地上建筑物出现裂缝的情况,并以统计法编制了受损害建筑物等密线图。图上的高密度延伸线恰好与六甲山麓发育的几条活断层的延长线一致,表明建筑物的损坏与断层活动有关。美国被活断层错开的建筑物沿活断层产生粘滑或其锁固点、端点破裂而发生错动,则积蓄的弹性应变能的释放就造成地震。所以预测地震危险性或水库诱发地震的可能性都需要首先研究活断层,判定其活动时代,错动速率、重复活动的证据和重现周期。正是由于地震预报的广泛研究,促使地震地质迅速发展,而地震地质工作的首要任务是鉴别是否存在能“发震”的活断层。近30a内对活断层的研究取得较大进展。世界各地都鉴别出了一些活断层,并逐步积累了其活动特性和错动规模的大量实际资料。有些国家还编制和出版了近期活动断层图,对活断层的调查、判定,监测方法也取得了不少经验。风火山隧道北部断裂切割表层第四系和公路的裂缝延伸特征(镜向西)风火山隧道北部断裂切割表层第四系和公路的裂缝延伸特征(镜向西)风火山隧道北部断裂切割表层第四系的裂缝延伸特征(镜向西)裂缝最大宽度5-10mm,延伸长度200m昆仑山口断裂带断层的现今活动在地表的显示F2-2镜向NW4.2活断层的特性活断层的特性包括活断层的类型和活动方式,活断层的规模,活断层的错动速率及其分级,活断层的重复活动周期,以及作为活断层活动记录的古地震事件等。4.2.1活断层的类型和活动方式按构造应力状态及两盘相对位移的性质,可将活断层划分为地质上熟悉的三种类型,即:走向滑动或平移断层,逆断层和正断层。其中以走向滑动型最为常见。三类活断层由于几何特征和运动特性不同,所以它们对工程场地的影响也各异。4.2.1.1走向滑动或平移断层最大最小主应力近于水平,所以两者之间的最大剪应力面,亦即此类断层的断层面,近于直立,因之其地表出露线也就最为平直;常表现为极窄的直线形断崖。主要是断层面两侧相对的水平运动,相对的垂直升降很小。河流最易于沿这种断层发育,水工建筑物也就最易于受到这种活断层的威胁。如断层与坝轴线小角度斜交,由于断层错动而造成的心墙拉开宽度可以相当大(图4—4)。有名的走向滑动型活断层有美国加州的圣安德烈斯断层系。土耳其安纳托利亚断层系,新西兰的阿尔卑斯断层系等。几个被活断层错开的土坝,运河主要是被这类活断层所错开的。我国的活断层也以走向滑动型为最多,特别是西南和西北,有些走滑型活断层规模非常巨大;例如塔里木断块南的阿尔金山断裂,青藏断块内部的鲜水河断裂,川滇断块西界的红河断裂都是我国西部长达数百到数千公里的活动着的走滑断裂。这些断层的水平错动往往在地形上留下明显迹象,尤以对水系的错动改造最为明显4.2.1.2逆断层最大主应力近于水平,最小主应力近于垂直。走向垂直于最大主应力的断层面与水平面夹角一般小于45°,往往为20-40°,且由于位移是水平挤压形成的,断层面两侧的点之间的距离总是由于位移而缩短。上盘除上升外还产生地面变形,往往伴以多个分支或次级断层的错动(图4-6)。如1971年美国圣费尔南多地震时使圣费尔南多断层(逆断层)产生逆冲错动。下降盘无地表变形及破裂,上升盘抬升近2m以上,并有强烈变形,许多小的次级断层主要集中在距主断面1km之内,但距主断面2.5km尚有一条产生150mm相对位移的次级断层。逆断层的断层线往往是波状弯曲的,断层带也较平移断层宽得多,由于上升盘隆起和倒悬的断层崖易产生滑坡,所以逆断层的确切位置最难于确定和预测。世界上很多大的山系以逆断层为其边界,如喜马拉雅山、安第斯山等,世界上许多大的地震都是伴随板块俯冲带或大陆碰撞带的逆断层错动产生的。这类逆断层有时地表变形范围很大,如1964年阿拉斯加地震,200000km2范围内变形最大垂直上升达12m。在我国逆冲型活断层主要发育于西部地区。受印度板块年速率约6cm的NNE向俯冲的推挤,自南而北有喜马拉雅山南麓逆冲推覆断层,天山南侧,天山北侧逆冲推覆断层等几个长达数百公里走向近东西的逆冲型活断层,青藏断块东界的北段,则有走向北东的龙门山逆掩推覆断层;所有这些断层都是活动性强烈的发震断层。4.2.1.3正断层最大主应力近于垂直最小主应力近于水平。走向垂直于最小主应力且与最大主应力呈锐角的断层面与水平面夹角大于45°,一般为60一80°。在错动过程中,垂直断面走向的水平方向有所伸长。伴随这类断层活动的变形(下沉)和分支断层错动,主要集中于下降盘(图4-7)。与河谷平行断面倾斜的正断层,可以使拦河坝产生比其它形式断层运动更宽的初始裂缝(图4-8)。一般说来,这类断层的可识别程度介于走滑断层和逆断层之间,其影响带宽度和对工程的危害程度也介于两者之间。地壳上承受水平张应力的地带主要沿大洋中脊分布。大陆上以现代活动正断层为主的地带有东非断裂谷,美国的盆地与山脉区(内华达、犹他及其附近地带),欧洲莱茵地堑系,苏联贝加尔湖地堑等。我国东部大陆边缘活动带的扩展与沉陷,在华北平原、渤海湾与松辽平原形成了一系列地堑系或裂谷系。地堑边缘的张性正断层是东部地区活断层中的主要类型。鄂尔多斯地块周围也有银川地堑、河套地堑和汾渭地堑系等一系列地堑盆地。地堑盆地中新生代沉积层厚有的达数百至千米(汾渭地堑系),有的达几千米(华北平原地堑系)有的达12000m(渤海湾中的渤中拗陷),这表明这些断裂的新生代适动以正断运动为主,另一方面,沿这些断裂带的地震震源机制,地震断层以及地震前后的形变测量又都表明这些断层都有很大的水平分量,表明其现代活动性与典型张性构造区和典型的内陆裂谷带有所不同。上述三种活断层的位移矢量都分别是单纯走滑或倾滑,其产生的应力场是三个主应力方向中的两个是水平的而另一个是垂直的。实际应力场往往是复杂的,三个主应力方向既不完全水平也不完全垂直,而是由不同的水平和垂直分量所合成。因之,断层的位移矢量也多由不同的倾滑、走滑分量所合成。而活断层的类型也就可以是左(或右)旋走滑逆冲断层或左(或右)旋走滑正断层等多种形式。断层活动受区域构造应力场所支配。内陆活断层是地块间相互运动调整的枢纽。由于这些地块是相互镶嵌的而且它们的结构及受力状况不均一,地块间的相对挤压、拉张和剪切错动就构成了这些大小地块和断块之间的断层活动,呈现出相当复杂的情况。除了这些活动断裂的不同段落有不同的活动方式,由于它们相互间的联系,构成网络状,各断层的活动往往不是孤立的,而是相互牵制、相互调整和相互转换的。一条活断层的终端点是要以各方式转换为另一种形式的活动,以调整地块运动所造成的地壳拉张,缩短和扭曲。研究活动断层相互转换的状况,对了解现代构造应力场、认识地震活动规律有重要的意义。按断裂的主次关系又可将活断层分为主断层(mainfault),分支断层(branch,fault)和次级断层(secondaryfault)。次级断层从平面上看来与主断层无关,实际上在剖面上它仍属主断层的分支,对于逆断层来说主要产生在上升盘,而对于正断层来说则主要产生在下降盘(参见图4-6和图4-7),而走向滑动断层则很少有次级断层伴生。断层类型不同由主断层中线到分支和次级断层带外缘的宽度也各不相同。走向错动断层为最窄,逆断层为最宽。根据已有地表错断的实际观测资料,各带的宽度如表4-1。活断层活动的两种基本方式是粘滑与稳滑。粘滑错动是间断性突然性发生的。在一定时间段内断层的两盘就如同粘在一起(锁固起来),不产生或仅有极其微弱的相互错动,一旦应力达到锁固段的强度极限,较大幅度的相互错动就在瞬时之内突然发生,锁固期间积蓄起来的弹性应变能也就突然释放出来而发生较强地震。这种瞬间发生的强烈错动间断的,周期性的发生,沿这种断层就有周期性的地震活动。稳(蠕)滑的错动是持续地平稳地发生的。由于断层两盘岩体强度低,或由于断层带内有软弱充填物或有高孔隙水压力,在受力过程中就会持续不断的相互错动而不能锁固以积蓄应变能,这种方式活动的断层仅伴有小震或无地震活动。有些断层则兼有粘滑与蠕滑。这三种方式的错动位移随时间的变化如图4-9所示。近年来,一些研究者注意到了粘滑型断层在大震前后一段时间内在震源区及其外围的蠕滑现象。1976年唐山地震前后的一些宏观现象,如井壁坍塌变形,沿八宝山断层地下水位的变化、河北省中部的井喷现象等,都可能与深部断层的蠕动有关。据唐山地震区地形变资料反演求得的震中区8km-6km的地带内,于1969-1975年发生了走滑错距为104cm的无震蠕滑、走向和
本文标题:第四章-活断层的工程地质研究
链接地址:https://www.777doc.com/doc-4730244 .html