您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 数列之累加法与累乘法---老师专用
1na.2n(n+3)经检验当n=1时也符合该式.∴an=(n≥2).2=2=2n²+3n-4n²+3nn(n+3)∴an=a₁+,n²+3n-42×(n-1)=2(n+1)+3=解析:由已知得an+1-an=n+2,于是有an-a₁=(an-an-1)+(an-1-an-2)+(an-2-an-3)+……+(a₂-a₁)=(n+1)+n+(n-1)+……+3∴an=a₁+(n+2)(n-1)=3+(n+2)(n-1)=n²+n+1(n≥2).经检验当n=1时也符合该式.∴an=n²+n+1.×(n-1)=(n+2)(n-1).22n+4=解析:由已知得an-an-1=2n,于是有an-a₁=(an-an-1)+(an-1-an-2)+(an-2-an-3)+……+(a₂-a₁)=2n+2(n-1)+2(n-2)+……+2×2数列之累加法与累乘法老师专用1.☆[累加法]设数列{an}中,a₁=2,an+1=an+n+2,则通项an=.2.◇设数列{an}中,a₁=3,an=an-1+2n,则通项an=.3.◇(2010辽宁卷T16)已知数列{an}满足a₁=33,an+1-an=2n,则an的最小值为.4.◇(2011四川卷T8)数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N*).若b₃=-2,b10=12,则a8=.5.◇(2015江苏卷T11)[累加法&裂项相消法]设数列{an}满足a₁=1,且an+1-an=n+1(n∈N*),则数列{1}n前10项的和为.为2.n21所以an的最小值2153533n=6+=2<5,当n=6时,an53433n=5+=5;5和6.*/当n=5时,anx≥233,当且仅当x=33时取得最小值.最接近33的两个整数是x+/*若x>0,x∈R,由基本不等式可得33+n-1,nn33∴an=a₁+n(n-1)=33+n(n-1),则an=解析:a₂-a₁=2,a₃-a₂=4,a4-a₃=6,…,an-an-1=2(n-1),以上各式左右两边分别相加,得an-a₁=2+4+6+…+2(n-1)=n(n-1),b10-b₃解析:设{bn}的公差为d,则d=10-3=2,∴bn=b₃+(n-3)d=2(n-4),即an+1-an=2(n-4).则a₂-a₁=-6,a₃-a₂=-4,a4-a₃=-2,…,an-an-1=2(n-5),累加得到an-a₁=(-6)+(-4)+(-2)+…+2(n-5)=(n-8)(n-1),故an=3+(n-8)(n-1),a8=3.2+n=,满足(+6.◇数列{an}满足a₁=1,且对任意的m,n∈N*,都有am+n=am+an+mn,则1+1+1+…+1=.a₁a₂a₃a20127.◇已知数列{an}中,a₁=p,a₂=q,且an+2-2an+1+an=d,求数列{an}的通项公式.8.◇已知数列{an}中,a₁=5,满足an=(11)an-1,求数列{an}的通项公式.9.◇已知数列{an}中,a₁1an+1=12)an,求数列{an}的通项公式.333n1111101122310na12011111{}前10项的和为S=2(1-+-+…+-)=2(1-)=.故数列1nn+11=2(-),ann(n+1)21则1=,2n(n+1)=nn-1na=a₁+(a₂-a₁)+(a₃-a₂)+…+(a-a)=1+2+3+…+n解析:由a₁=1,且an+1-an=n+1(n∈N*)得,201220132013223a2012a₁a₂a₃nn+11140241=2(-),∴+++…+=2(1-+-+…+-)=.ann(n+1)111111121∴1=,2=2,故an=a₁+2(n+2)(n-1)n(n+1)(n+2)(n-1)累加得到an-a₁=2+3+4+…+n=解析:令m=1,则有an+1=a₁+an+n,即an+1-an=n+1,所以a₂-a₁=2,a₃-a₂=3,a4-a₃=4,……,an-an-1=n,d).2n-2经检验当n=1时也符合该式.∴an=p+(n-1)(q-p+2d)=p+(n-1)(q-p+d)(n≥2).2n-2n-22∴an=a₁+(n-1)(q-p+n-2=(n-1)(q-p+d),2n-2=(n-1)(q-p)+×(n-1)d解析:原式可化为(an+2-an+1)-(an+1-an)=d.令bn=an+1-an,则bn+1-bn=d,所以数列{bn}是以b₁=a₂-a₁=q-p为首项,以d为公差的等差数列.∴bn=b₁+(n-1)d=q-p+(n-1)d.即an+1-an=q-p+(n-1)d.于是有an-a₁=(an-an-1)+(an-1-an-2)+(an-2-an-3)+……+(a₂-a₁)=[q-p+(n-2)d]+[q-p+(n-3)d]+[q-p+(n-4)d]+……[q-p+0d]5(n+1).2nn+1∴a=a₁×=2nn-1n-2243n+1n+1nn-1=×××…×3×2=.a₂×a₁anan-1an-2×…a₁=an-1×an-2×an-3于是有an,n1=n+1+nan-1解析:原式可化为an=1310.◇在数列{an}与{bn}中,a₁=1,b₁=4,数列{an}的前n项和Sn满足nSn+1-(n+3)Sn=0,2an+1为bn与bn+1的等比中项,n∈N*.⑴求a₂,b₂的值;⑵求数列{an}与{bn}的通项公式.=2×3n.2(n+1)n(n+1)n1=3n×(n+1)n21∴an=a₁×3n-1×.21(n+1)n(n+1)n3n-1×2×1=3n-1×=12×15×43×3…n-1n-2n-3n-4n+1nn-1n-2×××××3=(1)n-1a₂×a₁ananan-1an-2×…1n+2nn+2an=3n=3×,于是有a₁=an-1×an-2×an-3解析:原式可化为an+1.2=6-6(n+2)(n+1)n(n+1)n(n-1)(n+1)n则当n≥2时,an=Sn-Sn-1=,6.于是有Sn-1=6=6(n+1)n(n-1)(n+2)(n+1)n(n+2)(n+1)n∴Sn=S₁×.6=3×2×1(n+2)(n+1)n(n+2)(n+1)n=n-1n-2n-3n-4654n+2n+1nn-1=××××…×3×2×1S₃S₂S₁Sn-1Sn-2Sn-3S₁S₃S₂S4SnSn-1Sn-2于是有Sn=×××…×××.n+3nn+1Sn=nn+1S⑵由原式可得nS=(n+3)S,∴=9.b₁(2a₂)²=∵2a₂为b₁与b₂的等比中项,∴b₂解析:⑴令n=1可得S₂=4S₁=4,∴a₂=S₂-a₁=3./*令n=2可得2S₃=5S₂=20,∴S₃=10,a₃=S₃-S₂=6.*/4综上,恒有bn=(n+1)².=(2n+1)².(2n+2)²=b2n+1[(2n+1)(2n+2)]²[(2n+1)(2n+2)]²再由①式可得:b2n=∴b2n+1=b₁×(n+1)²=(2n+2)²=[(2n+1)+1]².b2n+1=(n+1)²,得:b₁以上各式连乘可)².2nb2n-16b5b₁2b₃4bnn+12n+2b2n+18b76b5b₃4n+3两式相除得bn+2=()²,于是有=()²,=()²,=()²,……,=(由已知bn·bn+1=(2an+1)²=[(n+1)(n+2)]²,①则bn+1·bn+2=[(n+2)(n+3)]²,②.2(n+1)n经检验当n=1时也符合上式,∴an=
本文标题:数列之累加法与累乘法---老师专用
链接地址:https://www.777doc.com/doc-4742984 .html