您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 招聘面试 > 1.2.1排列(一)课件-新人教A版选修2-3
问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?根据分步乘法计数原理,在3名同学中选出2名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有3×2=6种把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素a,b,c中任取2个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是ab,ac,ba,bc,ca,cb,共有3×2=6种.问题2.从1,2,3,4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?分析:解决这个问题分三个步骤:第一步先确定左边的数,在4个字母中任取1个,有4种方法;第二步确定中间的数,从余下的3个数中取,有3种方法;第三步确定右边的数,从余下的2个数中取,有2种方法由分步计数原理共有:4×3×2=24种不同的方法,用树型图排出,并写出所有的排列由此可写出所有的排法•由此可写出所有的三位数:•123,124,132,134,142,143,•213,214,231,234,241,243,•312,314,321,324,341,342,•412,413,421,423,431,432。同样,问题2可以归结为:从4个不同的元素a,b,c,d中任取3个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?所有不同排列是abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb.共有4×3×2=24种.排列的概念:从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同排列数的定义:从n个不同元素中,任取m(mn)个元素的所有排列的个数叫做从n个元素中取出m个元素的排列数,用符号表示mnA例1、下列问题中哪些是排列问题?(1)10名学生中抽5名学生开会(2)10名学生中选2名做正、副组长(3)从2,3,5,7,11中任取两个数相乘(4)从2,3,5,7,11中任取两个数相除(5)从班级5名优秀团员中选出3人参加上午的团委会(6)1000本参考书中选出100本给100位同学每人一本(7)1000名来宾中选20名贵宾分别坐1~20号贵宾席是不是是是是不是不是排列数公式及其推导:233423nnmnAAAAA……nnA45181310181813(1);(2);(3)AAAA计算:(1)(2)1!nnnn!()!mnnAnm=规定0!1例1、解方程:232100xxAA例3、求的值.1432nnnAA17161554mnA例2.若,则m,n.1714课堂练习1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,有种不同的种植方法?3.信号兵用3种不同颜色的旗子各一面,每次打出3面,最多能打出不同的信号有()D.27种C.6种种B.3种1. A2.从参加乒乓球团体比赛的5名运动员中选出3名进行某场比赛,并排定他们的出场顺序,有种不同的方法?24602423434A6034535AC612333A变式:信号兵用红,黄,蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?例1、某年全国足球甲级A组联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?解:14个队中任意两队进行1次主场比赛与1次客场比赛,对应于从14个元素中任取2个元素的一个排列,因此,比赛的总场次是1821314214A①有5本不同的书,从中选出3本给3名同学,每人一本,共有多少种不同的选法?例26034535A②有5种不同的书,从中选出3本给3名同学,每人一本,共有多少种不同的选法?125555排列数分步乘法计数原理例3:用0到9这10个数字,可以组成多少个没有重复数字的三位数?百位十位个位解法一:对排列方法分步思考。648899181919AAA6488992919AA从位置出发解法二:间接法.从0到9这十个数字中任取三个数字的排列数为,A310.648898910A310A29∴所求的三位数的个数是其中以0为排头的排列数为.A29逆向思维法解法三:对排列方法分类思考。符合条件的三位数可分为两类:百位十位个位A390百位十位个位A290百位十位个位A2964822939AA根据加法原理从元素出发分析个。有种,故符合题意的偶数有、千位上的排列数不能选),十位、百位种(排列数有中选);万位上的数字、种(从有)个位上的数字排列数解法一:(正向思考法331312331312542AAAAAA百位十位个位千位万位13A33A12A例4:由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?有约束条件的排列问题百位十位个位千位万位例4:由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?个共有:个,符合题意的偶数的数减去偶数中大于个,再数个,减去其中奇数的个位数有数字的组成无重复、、、、)由解法二:(逆向思维法365000055432133124413553312441355AAAAAAAAAA有约束条件的排列问题有约束条件的排列问题例5:6个人站成前后两排照相,要求前排2人,后排4人,那么不同的排法共有()A.30种B.360种C.720种D.1440种C小结:1.对有约束条件的排列问题,应注意如下类型:⑴某些元素不能在或必须排列在某一位置;⑵某些元素要求连排(即必须相邻);⑶某些元素要求分离(即不能相邻);2.基本的解题方法:(1)有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优先法);特殊元素,特殊位置优先安排策略
本文标题:1.2.1排列(一)课件-新人教A版选修2-3
链接地址:https://www.777doc.com/doc-4757840 .html