您好,欢迎访问三七文档
第三章SBR衍生工艺最初的SBR工艺是在一个池子中依时间顺序完成进水、曝气、沉淀、排水、排泥全过程,所有的工序都是间歇的,这就是传统SBR工艺。在操作上,需对进水、曝气、沉淀、排泥进行时序控制。为了处理连续流入的污水,至少需要两个池子交替进行进水。如果要求脱氮除磷,就必须在运行周期中增加缺氧、厌氧阶段,因而必须相应延长运行周期。间歇进水给操作带来了麻烦,在池子组合上也必须考虑来水的分配,于是出现了连续进水的ICEAS工艺。ICEAS工艺的容积利用率不够高,一般未超过60%,反应池没得到充分利用,相当一段时间曝气设备闲置。为了提高反应池和设备的利用率,开发出了DAT-IAT工艺。上述三种工艺对有机物的去除取得了较好的效果,但脱氮除磷不够理想。这是因为它们的缺氧磷的释放不充分,脱氮除磷效果自然有限。为提高SBR工艺的脱氮除磷功能,开发出了CASS工艺。为了开发出具有各种SBR工艺的优点的同时又能克服其缺点的工艺,国内外污水处理科技界正在进行多方面的试验研究。到目前为止,已开发出MSBR工艺和连续流SBR法等,它们的特点是保留SBR工艺共同具有的各种优点,又设法实现在一个反应池中连续进水、连续出水、常水位运行、简化出水设施,提高容积利用率,增强脱氮除磷效率,使之成为一种更加完善的工艺。这些新工艺的思路新颖有的已完成试验,有的已建成运行,都取得了很好的处理效果。目录SBR法的变形工艺(1).ICEAS法:间歇循环延时曝气法(2).DAT-IAT法:连续进水间歇曝气法(3).CASS/CAST工艺:循环活性污泥法(4).UNITANK单元水池活性污泥处理系统(一体化活性污泥法)(5).MSBR:改良型间歇式活性污泥法§3.1ICEAS法:间歇循环延时曝气法改良型SBR工艺之一——ICEAS工艺ICEAS工艺——连续进水、周期排水,延时曝气活性污泥法ICEAS工艺简介•研发背景:经典SBR反应器的间歇运行会带来曝气、搅拌、排水等设备的利用率不高的问题。考虑到其间歇进水给操作带来的麻烦因而进行了改进,工艺上采用连续进水、间歇排水的运行方式。•ICEAS工艺是一种应用于市政污水和工业废水,并对生物脱氮除磷具有显著效果的水处理工艺。ICEAS全称为间歇式循环延时曝气活性污泥法(IntermittentCycleExtendedAeration)其最大的特点就是在反应器的进水端增加了一个预反应区,运行方式为连续进水(沉淀期、排水期仍连续进水),间歇排水,无明显的反应阶段和闲置阶段。污水从预反应区以很低的流速进入主反应区,对主反应区的泥水分离不会产生明显影响。•ICEAS工艺,每个池子分为预反应区和主反应区两部分,预反应区一般处于缺氧状态,•主反应区是曝气反应的主体。采用连续进•水系统,减少了运行操作的复杂性,故适用•于较大规模的污水处理。由于ICEAS设施简单、管理方便,尤其是处理市政污水和工业废水方面比经典的SBR系统费用更省,因此在国内外受到了广泛重视。它是一种完全自动化的、基于“时控”的、可以有效防止流量和冲击负荷的工艺,容易扩建,出水水质良好。最早于20世纪80年代初在澳大利亚兴起,因其工艺设施简单,管理方便,国内外均得到广泛应用,目前全球已有超过500个的连续进水ICEAS工艺污水处理设施。ICEAS是连续进水工艺,不但在反应阶段进水,在沉淀和滗水阶段也进水。污水进入预反应区后,通过隔墙底部的连接口以平流流态进入主反应池,在主反应池中进行间歇曝气和沉淀滗水,成为连续进水、间歇出水的SBR反应池,使配水大大简化,运行也更加灵活。改良型SBR工艺之一——ICEAS工艺改良型SBR工艺之一——ICEAS工艺ICEAS工艺中各操作单元的作用为:A、曝气阶段由曝气系统向反应池内间歇供氧,此时有机物经微生物作用被生物氧化,同时污水中的氨氮经微生物硝化反硝化作用,达到脱氮的效果。B、沉淀阶段此时停止向反应池内供氧,活性污泥在静止状态下降,实现泥水分离。C、滗水阶段在污泥沉淀到一定深度后,滗水器系统开始工作,排出反应池内上清液。在滗水过程中,由于污泥沉降于池底,浓度较大,可根据需要启动污泥泵将剩余污泥排至污泥池中,以保持反应器内一定的活性污泥浓度。滗水结束后,又进入下一个新的周期,开始曝气,周而复始,完成对污水的处理。改良型SBR工艺之一——ICEAS工艺c.沉淀性能:ICEAS的沉淀会受到进水扰动,破坏了其成为理想沉淀的条件。克服扰动的措施——将池设计成长方形。b.推流性能:由于连续进水,ICEAS部分丧失了SBR的理想推流和对难降解物质去除率高的优点,而且不易控制污泥膨胀的发生,应设置选择区。a.控制简单连续进水,不用进水阀门之间切换,适用于较大型污水处理厂。与经典SBR工艺相比,ICEAS工艺的优缺点有:缺点优点§3.2DAT-IAT法:连续进水间歇曝气法§3.3CASS/CAST工艺:循环活性污泥法CyclicActivatedSludgeSystem(循环式活性污泥法)•CASS工艺是在ICEAS工艺的基础上开发出来的。一定程度上改进了ICEAS工艺污泥膨胀及沉淀扰动的问题。•通常CASS分为三个反应区:生物选择器(DO0.2mg/L)、缺氧区(DO0.5mg/L)、好氧区(DO=(2~3)mg/L。CASS工艺包括充水-曝气、充水-泥水分离、滗水和充水-闲置等四个阶段。改良型SBR工艺之二——CASS工艺•反应器特点:与ICEAS相比,预反应区容积较小,并设计成更加优化合理的生物选择器,而且增加了活性污泥的回流。•运行特点:CASS工艺运行时边进水边曝气,同时将主反应区的污泥回流至生物选择器。在沉淀阶段停止曝气,但是在沉淀过程中不仅不停止进水,而目污泥回流系统也不停止。CASS反应池图改良型SBR工艺之二——CASS工艺•与经典SBR相比,CASS工艺特点:1、稳定性2、污泥回流3、经济性比较与经典SBR相比,CASS工艺设污泥回流,增加了系统运行费用。且CASS工艺要求的自动化程度更高。在主反应池末端设有潜水泵,污泥通过潜水泵不断从主曝气区抽送至生物选择器中。污泥回流可以有效防止污泥膨胀的产生。生物选择器的设置加强了微生物对磷的释放、反硝化、对有机物的吸附吸收等作用,增加了系统运行的稳定性。改良型SBR工艺之二——CASS工艺CASS工艺原理CASS工艺是序批式活性污泥法(SBR)的一个变形。它在SBR的基础上,反应池沿长度方向设计为两部分——生物选择区,主反应区。在选择区中,废水中的溶解性有机物质能通过酶反应机理而迅速去除。选择区的最基本功能是防止产生污泥膨胀,回流污泥中的硝酸盐亦可在选择区中得到反硝化;选择区内微量曝气,亦可进行缺氧除磷;主反应区内主要进行降解有机物和硝化,同时也进行着硝化--反硝化过程。主反应区后部安装了可升降的自动滗水装置,曝气、沉淀和排水在同一池子内周期性地循环进行,取消了常规活性污泥法的初沉池和二沉池。CASS工艺每一操作循环由下列四个阶段组成:1)进水曝气阶段进水由曝气系统向反应池内供氧,此时有机污染物被微生物氧化分解,同时污水中的NH3-N通过微生物的硝化作用转化为NO3--N。2)沉淀阶段此时停止曝气,微生物利用水中剩余的DO进行氧化分解。反应池逐渐由好氧状态向缺氧状态转化,开始进行反硝化反应。污泥逐渐沉到池底,上层水变清。3)滗水阶段沉淀结束后,置于反应池末端的滗水器开始工作,自上而下逐层排出上清液。此时,反应池继续进行反硝化。4)闲置阶段闲置阶段即是滗水器上升到原始位置阶段。为了保持适当的污泥浓度,系统根据产生的污泥量排除相应数量的剩余污泥,排除的剩余污泥一般在沉淀阶段结束后进行。CASS工艺的生物选择区和脱氮除磷本工艺前置了一道“生物选择区”,形成浓度梯度,并可使磷释放;后设主反应区,主反应区除去除BOD5和脱氮外,另有一部分污泥回流至生物选择区,污泥回流量约为进水量的20%左右。CASS的成功运行可将废水中的含碳有机物和包括氮、磷的污染物去除。1)生物选择区设在池子首部,不设机械搅拌装置,反应条件在缺氧和厌氧之间变化。生物选择区有三个功能:a.絮体结构内底物的物理团聚与动力学和代谢选择同步进行;b.选择区被隔开,保证初始高絮体负荷,以及酶快速去除溶解底物;c.通过选择区的设计,还可以创造一个有利于磷释放的环境,这样促进聚磷菌的生长。生物选择区的设置严格遵循活性污泥种群组成动力学的有关规律,创造合适的微生物生长条件,从而选择出絮凝性细菌。活性污泥的絮体负荷S0/X0(即底物浓度和活性微生物浓度的比值)对系统中活性污泥的种群组成有较大的影响,较高的污泥絮体负荷有助于絮凝性细菌的生长和繁殖。CASS工艺中活性污泥不断地在生物选择器中经历高絮体负荷阶段,这样有利于絮凝性细菌的生长,提高污泥活性,并通过酶反应快速去除废水中的溶解性易降解底物,从而抑制了丝状细菌的生长和繁殖,避免了污泥膨胀的发生。同时当生物选择区处于缺氧环境时,回流污泥存在的少量硝酸盐氮可得到反硝化,反硝化量可达整个系统硝化量的20%。当选择器处于厌氧环境时,磷得以有效地释放,为生物除磷做准备。2)CASS工艺可以同步进行硝化和反硝化。同步反硝化意味着在不专门为硝酸盐的去除设混合装置或正常缺氧混合程序的条件下,硝化与反硝化同时在同一反应器发生。通常认为在系统中,氮去除机制与在微生物絮体内由于受扩散限制引起的溶解氧(DO)的浓度梯度有关,这样硝化菌存在于高溶解氧区或正氧化还原点位(OPR),相反反硝化菌在溶解氧降低区或负氧化还原点位(OPR)下活性十足。CASS工艺运行中控制供氧强度以及混合液溶解氧的浓度使其从0逐渐上升到2.5mg/L左右,约有50%时间溶解氧接近于零,30%在1mg/L左右,20%在2mg/L。这样使活性污泥絮体的外周保持一个好氧环境进行硝化,污水中的有机氮、蛋白氮等在好氧条件下首先被氨化菌转化为氨氮,而后在硝化菌的作用下变成硝酸盐氮;由于主反应区耗氧速度较快而溶解氧含量又不高,因此低溶解氧难渗入絮体内,这样,就在微生物絮体中形成了微反应区(微缺氧环境),使絮体内部发生反硝化作用,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮还原成氮气从污水中逸出。另外,该工艺曝气与非曝气交替进行,从而使泥水混合液通过主反应区,顺序经过缺氧—好氧—厌氧环境,尤其在非曝气阶段内污泥层以胞内在生物选择高负荷下储存或吸收的碳为碳源,进行反硝化,在污泥沉淀过程中也有一定的反硝化作用。因此CASS系统中出现曝气状态下的反硝化,使硝化/反硝化同时发生,这就无需专设缺氧区和内回流系统。污泥中少量硝态氮可在选择区中得到反硝化,由于CASS系统的脱硝主要通过硝化/反硝化作用,且回流比很小,选择区中反硝化量与整个系统相比是微不足道的,一般情况下对磷的释放无影响。3)CASS工艺可实现对磷的去除。生物除磷是依靠聚磷菌的作用实现的。生物选择区不曝气,这样反应环境非常迅速地从缺氧环境转化为厌氧环境,当选择区处于厌氧环境,聚磷菌依靠水解体内的聚磷(Poly-P)水解释放出正磷酸盐,同时产生能量以吸收水中的溶解性有机底物,并将其在体内合成为细胞学储备物质PHB;在主反应区为好氧环境时,聚磷菌以游离氧为电子受体,将细胞储备物质氧化,并利用该反应所产生的能量,过量地在污水中摄取磷酸盐并合成为ATP,其中一部分转化为聚磷贮存能量,为下一周期的厌氧释磷做准备。由于好氧段的吸磷量要远大于厌氧段的释磷量,所以通过剩余污泥的排放可达到除磷目的。若要在生物除磷的基础上进一步强化除磷效果或达到完全除磷的目的,可加入铝盐或铁盐,根据所去除磷的浓度的大小,化学污泥在池子中的浓度约在1.7g/L~2.0g/L左右,化学污泥可以进一步提高沉淀污泥的压缩能力。CASS工艺是活性污泥不断地经过耗氧和厌氧的循环,这将有利于聚磷菌在系统中的生长和积累。CASS活性污泥工艺的控制指标pH值进水pH值通常控制在6~9pH值异常对生化影响:pH值过低(低于6):活性污泥系统池面有酸味;处理效率下降;原生动物活动减弱。pH值过低(大于9):出水浑浊;处理效率
本文标题:SBR衍生工艺
链接地址:https://www.777doc.com/doc-4758784 .html