您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 数字图像处理DSP文献阅读
文献阅读报告课题名称:图像灰度变换学生学号:1004140229专业班级:通信工程02班学生姓名:闫磊目录摘要.........................................................11引言........................................................21.1图像增强的应用概况......................................32灰度变换....................................................42.1灰度线性变换............................................42.2分段线性变换............................................42.3非线性变换.............................................53直方图修正..................................................53.1直方图................................................63.2直方图均衡化..........................................63.3直方图规定化..................................................74心得体会....................................................8参考文献......................................................9摘要图像的灰度变换(Gray-ScaleTransformation,GST)处理是图像增强处理技术中一种非常基础、直接的空间域图像处理方法,也是图像数字化软件和图像显示软件的一个重要组成部分。灰度变换是指根据某种目标条件按一定变换关系逐点改变原图像中每一个像素灰度值的方法。目的是为了改善画质,使图像的显示效果更加清晰。本文简要介绍了灰度变换的应用前景,详细阐明了灰度变换的几种方法,常见的灰度变换方法有直接灰度变换发和直方图修正法。直接灰度变换法可以分为线性,分段线性以及非线性变换。直方图修正法可以分为直方图均衡化和直方图规定化。关键词:灰度变换,线性变换,分段线性变换,非线性变换,直方图均衡化,直方图规定化1.引言增强图象中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。图像增强可分成两大类:频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。基于空域的算法处理时直接对图像灰度级做运算基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。基于空域的算法分为点运算算法和邻域去噪算法。点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。邻域增强算法分为图像平滑和锐化两种。平滑一般用于消除图像噪声,但是也容易引起边缘的模糊。常用算法有均值滤波、中值滤波。锐化的目的在于突出物体的边缘轮廓,便于目标识别。常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。图像增强所包含的主要内容如下图:1.1图像增强的应用概况数字图像处理在40多年的时间里,迅速发展成一门独立的有强大生命力的学科,图像增强技术已逐步涉及人类生活和社会生产的各个方面,下面我们仅就几个方面的应用举些例子。1).航空航天领域的应用早在60年代初期,第3代计算机的研制成功和快速傅里叶变换的提出,使图像增强技术可以在计算机上实现。1964美国喷气推进实验室(JPL)的科研人员使用IBM7094计算机以及其它设备,采用集合校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等方法对航天探测器“徘徊者7号”发回的几千张月球照片成功的进行了处理。随后他们又对“徘徊者8号”和“水手号”发回地球的几万张照片进行了较为复杂地数字图像处理,使图像质量得到进一步的提高,从此图像增强技术进入了航空航天邻域的研究与应用。同时图像增强技术的发展也推动了硬件设备的提高,比如1983年LANDSAT-4的分辨率为30m,而如今发射的卫星分辨率可达到3-5m的范围内。图像采集设备性能的提高,使采集图像的质量和数据的准确性和清晰度得到了极大地提高。2).生物医学领域的应用图像增强技术在生物医学方面的应用有两类,其中一类是对生物医学的显微光学图像进行处理和分析,比如对红细胞、白细胞、细菌、虫卵的分类计数以及染色体的分析;另一类应用是对X射线图像的处理,其中最为成功的是计算机断层成像。1973年英国的EMI公司在制造出第一台X射线断层成像装置。由于人体的某些组织,比如心脏、乳腺等软组织对X射线的衰减变化不大,导致图像灵敏度不强。由此图像增强技术在生物医学图像中得到广泛的应用。3).工业生产领域的应用图像增强在工业生产的自动化设计和产品质量检验中得到广泛应用,比如机械零部件的检查和识别、印刷电路板的检查、食品包装出厂前的质量检查、工件尺寸测量、集成芯片内部电路的检测等等。此外计算机视觉也可以应用到工业生产中,将摄像机拍摄图片经过增强处理、数据编码、压缩送入机器人中,通过一系列的控制和转换可以确定目标的位置、方向、属性以及其它状态等,最终实现机器人按照人的意志完成特殊的任务。4).公共安全领域的应用在社会安全管理方面,图像增强技术的应用也十分广泛,如无损安全检查、指纹、虹膜、掌纹、人脸等生物特征的增强处理等等。图像增强处理也应用到交通监控中,通过电视跟踪技术锁定目标位置,比如对有雾图像、夜视红外图像、交通事故的分析等等。2.灰度变换灰度变换就是把原图像的像素灰度经过某个变换函数变换成新的图像灰度。常见的灰度变换方法有直接灰度变换发和直方图修正法。直接灰度变换法可以分为线性,分段线性以及非线性变换。直方图修正法可以分为直方图均衡化和直方图规定化。2.1灰度线性变换令图像f(i,j)的灰度范围为[a,b],线性变换后图像g(i,j)的范围为[a′,b′],如下图g(i,j)与f(i,j)之间的关系式为:在曝光不足或过度的情况下,图像灰度可能会局限在一个很小的范围内。这时在显示器上看到的将是一个模糊不清、似乎没有灰度层次的图像。采用线性变换对图像每一个像素灰度作线性拉伸,可有效地改善图像视觉效果。2.2分段线性变换增强图像对比度实际是增强图像各部分之间的反差,往往通过增强图像中两个灰度值间的动态范围来实现。为了突出感兴趣目标所在的灰度区间,相对抑制那些不感兴趣的灰度区间,可采用分段线性变换。如下图所示。设原图像在[0,Mf],感兴趣目标所在灰度范围在[a,b],欲使其灰度范围拉伸到[c,d],则对应的分段线性变换表达式为通过调整折线拐点的位置及控制分段直线的斜率,可对任一灰度区间进行拉伸或压缩。2.3.非线性变换非线性变换采用非线性变换函数,以满足特殊处理的需要。当用某些非线性函数如对数函数、指数函数等,作为映射函数时,可实现图像灰度的非线性变换。①对数变换对数变换的一般表达式为这里a,b,c是为了调整曲线的位置和形状而引入的参数。当希望对图像的低灰度区较大的拉伸而对高灰度区压缩时,可采用这种变换,它能使图像灰度分布与人的视觉特性相匹配。②指数变换指数变换的一般表达式为这里参数a,b,c用来调整曲线的位置和形状。这种变换能对图像的高灰度区给予较大的拉伸。3.直方图修正3.1直方图直方图是对图像灰度分布惊醒统计分析的重要手段。修正直方图,可以增强图像对比度;通过分析直方图,有助于确定图像分割的阈值;直方图还可同于图像匹配等操作。直方图修正是指通过修改直方图的形状来达到图像增强的目的。灰度直方图性质:1)表征了图像的一维信息。只反映图像中像素不同灰度值出现的次数(或频数)而未反映像素所在位置。2)与图像之间的关系是多对一的映射关系。一幅图像唯一确定出与之对应的直方图,但不同图像可能有相同的直方图。3)子图直方图之和为整图的直方图。3.2直方图均衡化直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。缺点:1)变换后图像的灰度级减少,某些细节消失;2)某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。设r和s分别表示归一化了的原图像灰度和经直方图修正后的图像灰度。即。在[0,1]区间内的任一个r值,都可产生一个s值,且。T(r)作为变换函数,满足下列条件:①在0≤r≤1内为单调递增函数,保证灰度级从黑到白的次序不变;②在0≤r≤1内,有0≤T(r)≤1;反变换关系为,T-1(s)对s同样满足上述两个条件。由概率论理论可知,如果已知随机变量r的概率密度为pr(r),而随机变量s是r的函数,则s的概率密度ps(s)可以由pr(r)求出。假定随机变量s的分布函数用Fs(s)表示,根据分布函数定义利用密度函数是分布函数的导数的关系,等式两边对s求导,有:可见,输出图像的概率密度函数可以通过变换函数T(r)可以控制图像灰度级的概率密度函数,从而改善图像的灰度层次,这就是直方图修改技术的基础。从人眼视觉特性来考虑,一幅图像的直方图如果是均匀分布的,即Ps(s)=k(归一化时k=1)时,该图像色调给人的感觉上该图像比较协调。因此要求将原直方图通过T(r)调整为均匀分布的.然后反过来按均衡化的直方图去调整原图像,以满足人眼视觉要求的目的。因为归一化假定,由密度函数则有,两边积分得,上式表明,当变换函数为r的累积分布函数时,能达到直方图均衡化的目的。对于离散的数字图像,用频率来代替概率,则变换函数T(rk)的离散形式可表示为:上式表明,均衡后各像素的灰度值sk可直接由原图像的直方图算出。一幅图像sk同rk之间的关系称为该图像的累积灰度直方图。3.3直方图规定化直方图均衡化能够自动增强整个图像的对比度,但它的具体增强效果不容易控制,处理的结果总是得到全局均匀化的直方图。实际上有时需要变换直方图,使之成为某个特定的形状,从而有选择地增强某个灰度值范围内的对比度。这时可以采用比较灵活的直方图规定化。一般来说正确地选择规定化的函数可以获得比直方图均衡化更好的效果。所谓直方图规定化,就是通过一个灰度映像函数,将原灰度直方图改造成所希望的直方图。所以,直方图修正的关键就是灰度映像函数。直方图匹配方法主要有3个步骤(这里设M和N分别为原始图和规定图中的灰度级数,且只考虑N≤M的情况):(1)如同均衡化方法中,对原始图的直方图进行灰度均衡化:(2)规定需要的直方图,并计算能使规定的直方图均衡化的变换:(3)将第1个步骤得到的变换反转过来,即将原始直方图对应映射到规定的直
本文标题:数字图像处理DSP文献阅读
链接地址:https://www.777doc.com/doc-4760151 .html