您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 17.3一元二次方程的根的判别式教案
17.3一元二次方程的根的判别式教案舜山初中孙静芝一、教学目标(一)知识教学点:1.了解根的判别式的概念.2.能用判别式判别根的情况.(二)能力训练点:1.培养学生从具体到抽象的观察、分析、归纳的能力.2.进一步考察学生思维的全面性.(三)德育渗透点:1.通过了解知识之间的内在联系,培养学生的探索精神.2.进一步渗透转化和分类的思想方法.二、教学重点、难点、疑点及解决方法1.教学重点:会用判别式判定根的情况.2.教学难点:正确理解“当b2-4ac<0时,方程ax2+bx+c=0(a≠0)无实数根.”3.教学疑点:如何理解一元二次方程ax2+bx+c=0在实数范围内,当b2-4ac<0时,无解.在高中讲复数时,会学习当b2-4ac<0时,实系数的一元二次方程有两个虚数根.三、教学步骤(一)明确目标在前一节的“公式法”部分已经涉及到了,当b2-4ac≥0时,可以求出两个实数根.那么b2-4ac<0时,方程根的情况怎样呢?这就是本节课的目标.本节课将进一步研究b2-4ac>0,b2-4ac=0,b2-4ac<0三种情况下的一元二次方程根的情况.(二)整体感知在推导一元二次方程求根公式时,得到b2-4ac决定了一元二次方程的根的情况,称b2-4ac为根的判别式.一元二次方程根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也有利于进一步学习函数的有关内容,并且可以解决许多其它问题.在探索一元二次方程根的情况是由谁决定的过程中,要求学生从中体会转化的思想方法以及分类的思想方法,对学生思维全面性的考察起到了一个积极的渗透作用.(三)重点、难点的学习及目标完成过程1.利用公式法解下列方程.通过自己亲身感受的根的情况,对本节课的结论的得出起到了一个推波助澜的作用.2.任何一个一元二次方程ax2+bx+c=0(a≠0)用配方法将(1)当b2-4ac>0时,方程有两个不相等的实数根.2221532022542032310xxyyxx(3)当b2-4ac<0时,方程没有实数根.教师通过引导之后,提问:究竟谁决定了一元二次方程根的情况?答:b2-4ac.3.①定义:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用符号“△”表示.②一元二次方程ax2+bx+c=0(a≠0).当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根.反之亦然.注意以下几个问题:(1)∵a≠0,∴4a2>0这一重要条件在这里起了“承上启下”的作用,即对上式开平方,随后有下面三种情况.正确得出三种情况的结论,需对平方根的概念有一个深刻的、正确的理解,所以,在课前进行了铺垫.在这里应向学生渗透转化和分类的思想方法.(2)当b2-4ac<0,说“方程ax2+bx+c=0(a≠0)没有实数根”比较好.有时,也说“方程无解”.这里的前提是“在实数范围内无解”,也就是方程无实数根”的意思.4.例1不解方程,判别下列方程的根的情况:(1)2x2+3x-4=0;(2)16y2+9=24y;(3)5(x2+1)-7x=0.解:(1)∵△=32-4×2×(-4)=9+32>0,∴原方程有两个不相等的实数根.(2)原方程可变形为16y2-24y+9=0.∵△=(-24)2-4×16×9=576-576=0,∴原方程有两个相等的实数根.(3)原方程可变形为5x2-7x+5=0.∵△=(-7)2-4×5×5=49-100<0,∴原方程没有实数根.学生口答,教师板书,引导学生总结步骤,(1)化方程为一般形式,确定a、b、c的值;(2)计算b2-4ac的值;(3)判别根的情况.强调两点:(1)只要能判别△值的符号就行,具体数值不必计算出.(2)判别根的情况,不必求出方程的根.练习.1.不解方程,判别下列方程根的情况:(1)3x2+4x-2=0;(2)2y2+5=6y;(3)4p(p-1)-3=0;(4)(x-2)2+2(x-2)-8=0;学生板演、笔答、评价.第(4)题可去括号,化一般式进行判别,也可设y=x-2,判别方程y2+2y-8=0根的情况,由此判别原方程根的情况.2.在一元二次方程若a与c异号,则方程()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.根的情况无法确定例2:已知关于的方程,问取何值时,这个方程:⑴有两个不相等的实数根?⑵有两个相等的实数根?⑶没有实数根?解:中)0(02acbxax230xxkxk234194kk()教师板书,引导学生回答.此题是含有字母系数的一元二次方程.注意字母的取值范围,从而确定b2-4ac的取值.练习:1.方程有等根时,实数的个数是()(A)0(B)1(C)2(D)大于22.关于的一元二次方程有两个实数根,则m的取值范围为()94k>0方程有两个不相等的实数根k<94<94k时,原方程有两个不相等的实数根940k方程有两个相等的实数根94k94k时,原方程有两个相等的实数根94k<0>94>94k时,原方程没有实数根k解得当解得当解得当2xaaxax2(1)20mxmxm3.议一议设△ABC的三边为a,b,c.方程有俩个相等的实数根,且a,b,c满足试判断△ABC的形状。解:由数字系数,过渡到字母系数,使学生体会到由具体到抽象,并且注意字母的取值.(四)总结、扩展(1)判别式的意义及一元二次方程根的情况.①定义:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式.用“△”表示②一元二次方程ax2+bx+c=0(a≠0).当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根.反之亦然.21(2)04xaxbc32bac141(2)0420abcabc原方程有两个相等的实数根322(32)0640550bacaaccaaccacac32baccabc又ABC是等边三角形。(2)通过根的情况的研究过程,深刻体会转化的思想方法及分类的思想方法.(五)布置作业教材P.36习题17.3~1、2
本文标题:17.3一元二次方程的根的判别式教案
链接地址:https://www.777doc.com/doc-4769308 .html