您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 给排水/暖通与智能化 > 2.2.1条件概率公开课
有关概念:1.事件A与B至少有一个发生的事件叫做A与B的和事件,记为(或);ABAB3.若为不可能事件,则说事件A与B互斥.AB复习引入:2.事件A与B都发生的事件叫做A与B的积事件,记为(或);ABAB随机事件的概率有加法公式:()()()PABPAPB若事件A与B互斥,则:你能算吗?五一假期你妈妈带你到她的一个朋友家做客,闲谈间正巧碰到她的女儿回家,这时主人介绍说:“这是我的一个女儿,我还有一个孩子呢。”这个家庭中有两个孩子,已知其中有一个是女孩,问这时另一个孩子也是女孩的概率为多大?问题该家庭中有两个孩子,已知其中有一个是女孩,问另一个小孩也是女孩的概率为多大?解{(,),(,),(,),(,)}男男男女女男女女(,),(,),(,)A={已知一个是女孩}={男女女男女女}{}{(,)}B另一个也是女孩女女1.3所以所求概率为问题该家庭中有两个孩子,已知老大是女孩,问另一个小孩也是女孩的概率为多大?解{(,),(,),(,),(,)}男男男女女男女女(,),(,),(,)A={已知一个是女孩}={男女女男女女}{}{(,)}B另一个也是女孩女女(,),(,)={已知老大是女孩}={女男女女A}1.2所以所求概率为思考:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学中奖的概率是否比其他同学小?13学抽到中奖奖券”表示事件“最后一名同不妨设B12没有抽到中奖奖券”表示事件“第一名同学不妨设A则”的事件表示为一名同学抽到中奖奖券后中奖奖券的情况下,最“在第一名同学没抽到,AB条件概率对任意事件A和事件B,在已知事件A发生的条件下事件B发生的条件概率”,叫做条件概率。记作P(B|A).基本概念分析:求P(B|A)的一般思想因为已经知道事件A必然发生,所以只需在A发生的范围内考虑问题,即现在的样本空间为A。因为在事件A发生的情况下事件B发生,等价于事件A和事件B同时发生,即AB发生。故其条件概率为()(|)()nABPBAnA为了把条件概率推广到一般情形,不妨记原来的样本空间为,则有()/()()(|)()/()()nABnPABPBAnAnPA条件概率计算公式:注:⑴0(|)PBA≤≤1;⑵几何解释:BA()()()PABPBAPA概率P(B|A)与P(AB)的区别与联系联系:事件A,B都发生了区别:样本空间不同:在P(B|A)中,事件A成为样本空间;在P(AB)中,样本空间仍为。在某次外交谈判中,中外双方都为了自身的利益而互不相让,这时对方有个外交官提议以抛掷一颗骰子决定,若已知出现点数不超过3的条件下再出现点数为奇数则按对方的决议处理,否则按中方的决议处理,假如你在现场,你会如何抉择?B={出现的点数是奇数}={1,3,5}设A={出现的点数不超过3}={1,2,3}只需求事件A发生的条件下,事件B的概率即P(B|A)()2(|)()3nABPBAnAB5A2134,6解法一(减缩样本空间法)例题1解1:在某次外交谈判中,中外双方都为了自身的利益而互不相让,这时对方有个外交官提议以抛掷一颗骰子决定,若已知出现点数不超过3的条件下再出现点数为奇数则按对方的决议处理,否则按中方的决议处理,假如你在现场,你会如何抉择?B={出现的点数是奇数}={1,3,5}设A={出现的点数不超过3}={1,2,3}只需求事件A发生的条件下,事件B的概率即P(B|A)B5A2134,6例题1解2:由条件概率定义得:()(|)()pABPBApA123132解法二(条件概率定义法)例2、在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽取到理科题的概率;(2)第一次和第二次都抽取到理科题的概率;解:设第1次抽到理科题为事件A,第2次抽到理科题为事件B,则第1次和第2次都抽到理科题为事件AB.(1)从5道题中不放回地依次抽取2道的事件数为25()20nA1134()12nAAA根据分步乘法计数原理,()123()()205nAPAn例2、在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽取到理科题的概率;(2)第一次和第二次都抽取到理科题的概率;232()6nABA()()63()()2010nABPABn解:设第1次抽到理科题为事件A,第2次抽到理科题为事件B,则第1次和第2次都抽到理科题为事件AB.例2、在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽取到理科题的概率;(2)第一次和第二次都抽取到理科题的概率;(3)在第一次抽到理科题的条件下,第二次抽到理科题的概率。(3)解法一:由(1)(2)可得,在第一次抽到理科题的条件下,第二次抽到理科题的概率为2153103)()()(APABPABP例2、在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽取到理科题的概率;(2)第一次和第二次都抽取到理科题的概率;(3)在第一次抽到理科题的条件下,第二次抽到理科题的概率。解法二:因为n(AB)=6,n(A)=12,所以21126)()()(AnABnABP解法三:第一次抽到理科题,则还剩下两道理科、两道文科题故第二次抽到理科题的概率为1/2例3、一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率。112(12)()2iiAiAAAA解:设第次按对密码为事件,则表示不超过次就按对密码。112AAA(1)因为事件与事件互斥,由概率的加法公式得112()()()PAPAPAA1911101095例3、一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率。B(2)用表示最后一位按偶数的事件,则112()()()PABPABPAAB14125545112(12)()2iiAiAAAA解:设第次按对密码为事件,则表示不超过次就按对密码。掷两颗均匀骰子,已知第一颗掷出6点条件下,问“掷出点数之和不小于10”的概率是多少?()(|)()nABPABnB解:设A={掷出点数之和不小于10},B={第一颗掷出6点}3162课堂练习小结练习:甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?解:设A={甲地为雨天},B={乙地为雨天},则P(A)=20%,P(B)=18%,P(AB)=12%,1()12%2()()18%3PABPABPB()乙地为雨天时甲地也为雨天的概率是2()12%3()()20%5PABPBAPA()甲地为雨天时乙地也为雨天的概率是练习:甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(3)甲乙两市至少一市下雨的概率是多少?∵{甲乙两市至少一市下雨}=A∪B而P(A∪B)=P(A)+P(B)-P(AB)=20%+18%-12%=26%∴甲乙两市至少一市下雨的概率为26%解:设A={甲地为雨天},B={乙地为雨天},则P(A)=20%,P(B)=18%,P(AB)=12%,1.条件概率的定义.()()()PABPBAPA课堂小结2.条件概率的性质.3.条件概率的计算方法.(1)减缩样本空间法(2)条件概率定义法()()()PABPBAPA送给同学们一段话:在概率的世界里充满着和我们直觉截然不同的事物。面对表象同学们要坚持实事求是的态度、锲而不舍的精神。尽管我们的学习生活充满艰辛,但我相信只要同学们不断进取、挑战自我,我们一定会达到成功的彼岸!
本文标题:2.2.1条件概率公开课
链接地址:https://www.777doc.com/doc-4771324 .html