您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 1.1.2四种命题之间的关系
命题及其关系1.1.2四种命题下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?1.若f(x)是正弦函数,则f(x)是周期函数;2.若f(x)是周期函数,则f(x)是正弦函数;3.若f(x)不是正弦函数,则f(x)不是周期函数;4.若f(x)不是周期函数,则f(x)不是正弦函数。观察命题(1)与命题(2)的条件和结论之间分别有什么关系?1.若f(x)是正弦函数,则f(x)是周期函数;2.若f(x)是周期函数,则f(x)是正弦函数;互逆命题:一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题叫做互逆命题。原命题:其中一个命题叫做原命题。逆命题:另一个命题叫做原命题的逆命题。pqqp即原命题:若p,则q逆命题:若q,则p例如,命题“同位角相等,两直线平行”的逆命题是“两直线平行,同位角相等”。原命题与其逆命题的真假是否存在相关性呢?观察命题(1)与命题(3)的条件和结论之间分别有什么关系?1.若f(x)是正弦函数,则f(x)是周期函数;3.若f(x)不是正弦函数,则f(x)不是周期函数.pq┐p原命题:若p,则q┐q为书写简便,常把条件p的否定和结论q的否定分别记作“┐p”“┐q”否命题:若┐p,则┐q互否命题原命题(原命题的)否命题例如,命题“同位角相等,两直线平行”的否命题是“同位角不相等,两直线不平行”。原命题与其否命题的真假是否存在相关性呢?观察命题(1)与命题(4)的条件和结论之间分别有什么关系?1.若f(x)是正弦函数,则f(x)是周期函数;4.若f(x)不是周期函数,则f(x)不是正弦函数.pq┐q原命题:若p,则q┐p逆否命题:若┐q,则┐p互为逆否命题原命题(原命题的)逆否命题例如,命题“同位角相等,两直线平行”的逆否命题是“两直线不平行,同位角不相等”。原命题与其逆否命题的真假是否存在相关性呢?2、互否命题:如果第一个命题的条件和结论是第二个命题的条件和结论的否定,那么这两个命题叫做互否命题。如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题。3、互为逆否命题:如果第一个命题的条件和结论分别是第二个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题。1、互逆命题:如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫互逆命题。如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题。三个概念原命题,逆命题,否命题,逆否命题四种命题形式:原命题:逆命题:否命题:逆否命题:若p,则q若q,则p若┐p,则┐q若┐q,则┐p判断正误,并说明理由:(1)若原命题是“对顶角相等”,它的命题的否定“对顶角不相等”。(2)若原命题是“对顶角相等”,它的否命题是“不成对顶关系的两个角不相等”。否命题与命题的否定否命题是用否定条件也否定结论的方式构成新命题。命题的否定是逻辑联结词“非”作用于判断,只否定结论不否定条件。对于原命题:若p,则q有否命题:若┐p,则┐q。命题的否定:若p,则┐q。例设原命题是“当c0时,若ab,则acbc”,写出它的逆命题、否命题、逆否命题,并分别判断它们的真假:解:逆命题:当c0时,若acbc,则ab.逆命题为真.否命题:当c0时,若a≤b,则ac≤bc.否命题为真.逆否命题:当c0时,若ac≤bc,则a≤b.逆否命题为真.原结论反设词原结论反设词是至少有一个都是至多有一个大于至少有n个小于至多有n个对所有x,成立对任何x,不成立准确地作出反设(即否定结论)是非常重要的,下面是一些常见的结论的否定形式.不是不都是不大于大于或等于一个也没有至少有两个至多有(n-1)个至少有(n+1)个存在某x,不成立存在某x,成立练习:分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假。(1)若q1,则方程有实根。(2)若ab=0,则a=0或b=0.220xxq
本文标题:1.1.2四种命题之间的关系
链接地址:https://www.777doc.com/doc-4786902 .html