您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > nand-flash-裸板驱动及其时序图详解
nandflash裸板驱动,介绍的比较精辟的驱动程序设计:硬件特性:【Flash的硬件实现机制】Flash全名叫做FlashMemory,属于非易失性存储设备(Non-volatileMemoryDevice),与此相对应的是易失性存储设备(VolatileMemoryDevice)。关于什么是非易失性/易失性,从名字中就可以看出,非易失性就是不容易丢失,数据存储在这类设备中,即使断电了,也不会丢失,这类设备,除了Flash,还有其他比较常见的入硬盘,ROM等,与此相对的,易失性就是断电了,数据就丢失了,比如大家常用的内存,不论是以前的SDRAM,DDRSDRAM,还是现在的DDR2,DDR3等,都是断电后,数据就没了。Flash的内部存储是MOSFET,里面有个悬浮门(FloatingGate),是真正存储数据的单元。在Flash之前,紫外线可擦除(uv-erasable)的EPROM,就已经采用用FloatingGate存储数据这一技术了。数据在Flash内存单元中是以电荷(electricalcharge)形式存储的。存储电荷的多少,取决于图中的外部门(externalgate)所被施加的电压,其控制了是向存储单元中冲入电荷还是使其释放电荷。而数据的表示,以所存储的电荷的电压是否超过一个特定的阈值Vth来表示。【SLC和MLC的实现机制】NandFlash按照内部存储数据单元的电压的不同层次,也就是单个内存单元中,是存储1位数据,还是多位数据,可以分为SLC和MLC:1.SLC,SingleLevelCell:单个存储单元,只存储一位数据,表示成1或0.就是上面介绍的,对于数据的表示,单个存储单元中内部所存储电荷的电压,和某个特定的阈值电压Vth,相比,如果大于此Vth值,就是表示1,反之,小于Vth,就表示0.对于nandFlash的数据的写入1,就是控制ExternalGate去充电,使得存储的电荷够多,超过阈值Vth,就表示1了。而对于写入0,就是将其放电,电荷减少到小于Vth,就表示0了。关于为何NandFlash不能从0变成1,我的理解是,物理上来说,是可以实现每一位的,从0变成1的,但是实际上,对于实际的物理实现,出于效率的考虑,如果对于,每一个存储单元都能单独控制,即,0变成1就是,对每一个存储单元单独去充电,所需要的硬件实现就很复杂和昂贵,同时,所进行对块擦除的操作,也就无法实现之前的,一闪而过的速度了,也就失去了Flash的众多特性了。2.MLC,MultiLevelCell:与SLC相对应,就是单个存储单元,可以存储多个位,比如2位,4位等。其实现机制,说起来比较简单,就是,通过控制内部电荷的多少,分成多个阈值,通过控制里面的电荷多少,而达到我们所需要的存储成不同的数据。比如,假设输入电压是Vin=4V(实际没有这样的电压,此处只是为了举例方便),那么,可以设计出2的2次方=4个阈值,1/4的Vin=1V,2/4的Vin=2V,3/4的Vin=3V,Vin=4V,分别表示2位数据00,01,10,11,对于写入数据,就是充电,通过控制内部的电荷的多少,对应表示不同的数据。对于读取,则是通过对应的内部的电流(与Vth成反比),然后通过一系列解码电路完成读取,解析出所存储的数据。这些具体的物理实现,都是有足够精确的设备和技术,才能实现精确的数据写入和读出的。单个存储单元可以存储2位数据的,称作2的2次方=4LevelCell,而不是2LevelCell,这点,之前差点搞晕了。。。,同理,对于新出的单个存储单元可以存储4位数据的,称作2的4次方=16LevelCell。【关于如何识别SLC还是MLC】NandFlash设计中,有个命令叫做ReadID,读取ID,意思是读取芯片的ID,就像大家的身份证一样,这里读取的ID中,是读取好几个字节,一般最少是4个,新的芯片,支持5个甚至更多,从这些字节中,可以解析出很多相关的信息,比如此NandFlash内部是几个芯片(chip)所组成的,每个chip包含了几片(Plane),每一片中的页大小,块大小,等等。在这些信息中,其中有一个,就是识别此flash是SLC还是MLC。下面这个就是最常见的NandFlash的datasheet中所规定的,第3个字节,3rdbyte,所表示的信息,其中就有SLC/MLC的识别信息:上图是常见的NandFlash所拥有的引脚(Pin)所对应的功能,简单翻译如下:1.I/O0~I/O7:用于输入地址/数据/命令,输出数据2.CLE:CommandLatchEnable,命令锁存使能,在输入命令之前,要先在模式寄存器中,设置CLE使能3.ALE:AddressLatchEnable,地址锁存使能,在输入地址之前,要先在模式寄存器中,设置ALE使能4.CE#:ChipEnable,芯片使能,在操作NandFlash之前,要先选中此芯片,才能操作5.RE#:ReadEnable,读使能,在读取数据之前,要先使CE#有效。6.WE#:WriteEnable,写使能,在写取数据之前,要先使WE#有效。7.WP#:WriteProtect,写保护8.R/B#:Ready/BusyOutput,就绪/忙,主要用于在发送完编程/擦除命令后,检测这些操作是否完成,忙,表示编程/擦除操作仍在进行中,就绪表示操作完成.9.Vcc:Power,电源10.Vss:Ground,接地11.N.C:Non-Connection,未定义,未连接。[小常识]在数据手册中,你常会看到,对于一个引脚定义,有些字母上面带一横杠的,那是说明此引脚/信号是低电平有效,比如你上面看到的RE头上有个横线,就是说明,此RE是低电平有效,此外,为了书写方便,在字母后面加“#”,也是表示低电平有效,比如我上面写的CE#;如果字母头上啥都没有,就是默认的高电平有效,比如上面的CLE,就是高电平有效。还有的是在字母前面加个小n,例如nRE,这也是表示低电平有效的。【为何需要ALE和CLE】突然想明白了,NandFlash中,为何设计这么多的命令,把整个系统搞这么复杂的原因了:比如命令锁存使能(CommandLatchEnable,CLE)和地址锁存使能(AddressLatchEnable,ALE),那是因为,NandFlash就8个I/O,而且是复用的,也就是,可以传数据,也可以传地址,也可以传命令,为了区分你当前传入的到底是啥,所以,先要用发一个CLE(或ALE)命令,告诉nandFlash的控制器一声,我下面要传的是命令(或地址),这样,里面才能根据传入的内容,进行对应的动作。否则,nandflash内部,怎么知道你传入的是数据,还是地址,还是命令啊,也就无法实现正确的操作了.【NandFlash只有8个I/O引脚的好处】1.减少外围引脚:相对于并口(Parellel)的NorFlash的48或52个引脚来说,的确是大大减小了引脚数目,这样封装后的芯片体积,就小很多。现在芯片在向体积更小,功能更强,功耗更低发展,减小芯片体积,就是很大的优势。同时,减少芯片接口,也意味着使用此芯片的相关的外围电路会更简化,避免了繁琐的硬件连线。2.提高系统的可扩展性,因为没有像其他设备一样用物理大小对应的完全数目的addr引脚,在芯片内部换了芯片的大小等的改动,对于用全部的地址addr的引脚,那么就会引起这些引脚数目的增加,比如容量扩大一倍,地址空间/寻址空间扩大一倍,所以,地址线数目/addr引脚数目,就要多加一个,而对于统一用8个I/O的引脚的NandFlash,由于对外提供的都是统一的8个引脚,内部的芯片大小的变化或者其他的变化,对于外部使用者(比如编写nandflash驱动的人)来说,不需要关心,只是保证新的芯片,还是遵循同样的接口,同样的时序,同样的命令,就可以了。这样就提高了系统的扩展性。【Nandflash的一些典型(typical)特性】1.页擦除时间是200us,有些慢的有800us。2.块擦除时间是1.5ms.3.页数据读取到数据寄存器的时间一般是20us。4.串行访问(Serialaccess)读取一个数据的时间是25ns,而一些旧的nandflash是30ns,甚至是50ns。5.输入输出端口是地址和数据以及命令一起multiplex复用的。以前老的NandFlash,编程/擦除时间比较短,比如K9G8G08U0M,才5K次,而后来很多6.nandflash的编程/擦除的寿命,最多允许的次数,以前的nandflash多数是10K次,也就是1万次,而现在很多新的nandflash,技术提高了,比如,Micron的MT29F1GxxABB,Numonyx的NAND04G-B2D/NAND08G-BxC,都可以达到100K,也就是10万次的编程/擦除。和之前常见的NorFlash达到同样的使用寿命了。6.48引脚的TSOP1(K9F1208UOM)封装或52引脚的ULGA封装【NandFlash中的特殊硬件结构】由于nandflash相对其他常见设备来说,比较特殊,所以,特殊的设备,也有特殊的设计,所以,有些特殊的硬件特性,就有必要解释一下:1.页寄存器(PageRegister):由于NandFlash读取和编程操作来说,一般最小单位是页,所以,nandflash在硬件设计时候,就考虑到这一特性,对于每一片,都有一个对应的区域,专门用于存放,将要写入到物理存储单元中去的或者刚从存储单元中读取出来的,一页的数据,这个数据缓存区,本质上就是一个buffer,但是只是名字叫法不同,datasheet里面叫做PageRegister,此处翻译为页寄存器,实际理解为页缓存,更为恰当些。而正是因为有些人不了解此内部结构,才容易产生之前遇到的误解:以为内存里面的数据,通过NandFlash的FIFO,写入到NandFlash里面去,就以为立刻实现了实际数据写入到物理存储单元中了。而实际上,只是写到了这个页缓存中,只有等你发了对应的编程第二阶段的确认命令0x10之后,实际的编程动作才开始,才开始把页缓存中的数据,一点点写到物理存储单元中去。这也是为什么发完命令0x10之后需要等待一段时间的原因。所以,简单总结一下就是,对于数据的流向,实际是经过了如下步骤:图4NandFlash读写时的数据流向【NandFlash中的坏块(BadBlock)】NandFlash中,一个块中含有1个或多个位是坏的,就成为其为坏块。坏块的稳定性是无法保证的,也就是说,不能保证你写入的数据是对的,或者写入对了,读出来也不一定对的。而正常的块,肯定是写入读出都是正常的。坏块有两种:(1)一种是出厂的时候,也就是,你买到的新的,还没用过的NandFlash,就可以包含了坏块。此类出厂时就有的坏块,被称作factory(masked)badblock或initialbad/invalidblock,在出厂之前,就会做对应的标记,标为坏块。具体标记的地方是,对于现在常见的页大小为2K的NandFlash,是块中第一个页的oob起始位置(关于什么是页和oob,下面会有详细解释)的第1个字节(旧的小页面,pagesize是512B甚至256B的nandflash,坏块标记是第6个字节),如果不是0xFF,就说明是坏块。相对应的是,所有正常的块,好的块,里面所有数据都是0xFF的。(2)第二类叫做在使用过程中产生的,由于使用过程时间长了,在擦块除的时候,出错了,说明此块坏了,也要在程序运行过程中,发现,并且标记成坏块的。具体标记的位置,和上面一样。这类块叫做worn-outbadblock。对于坏块的管理,在Linux系统中,叫做坏块管理(BBM,
本文标题:nand-flash-裸板驱动及其时序图详解
链接地址:https://www.777doc.com/doc-4789480 .html