您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 二次函数与相似三角形问题(含答案)
1综合题讲解函数中因动点产生的相似三角形问题例题如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B。⑴求抛物线的解析式;(用顶点式...求得抛物线的解析式为xx41y2)⑵若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;⑶连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由。分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O、C、D、B四点为顶点的四边形为平行四边形要分类讨论:按OB为边和对角线两种情况2.函数中因动点产生的相似三角形问题一般有三个解题途径①求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。例1题图图1OAByxOAByx图22yxEQPCBOA例题2:如图,已知抛物线y=ax2+4ax+t(a>0)交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).(1)求抛物线的对称轴及点A的坐标;(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论;(3)连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.练习1、已知抛物线2yaxbxc经过53(33)02PE,,,及原点(00)O,.(1)求抛物线的解析式.(由一般式...得抛物线的解析式为225333yxx)(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称轴右侧且位于直线PC下方的抛物线上,任取一点Q,过点Q作直线QA平行于y轴交x轴于A点,交直线PC于B点,直线QA与直线PC及两坐标轴围成矩形OABC.是否存在点Q,使得OPC△与PQB△相似?若存在,求出Q点的坐标;若不存在,说明理由.(3)如果符合(2)中的Q点在x轴的上方,连结OQ,矩形OABC内的四个三角形OPCPQBOQPOQA,,,△△△△之间存在怎样的关系?为什么?3练习2、如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处。已知折叠55CE,且3tan4EDA。(1)判断OCD△与ADE△是否相似?请说明理由;(2)求直线CE与x轴交点P的坐标;(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由。练习3、在平面直角坐标系xOy中,已知二次函数2(0)yaxbxca的图象与x轴交于AB,两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(23),和(312),.(1)求此二次函数的表达式;(由一般式...得抛物线的解析式为223yxx)(2)若直线:(0)lykxk与线段BC交于点D(不与点BC,重合),则是否存在这样的直线l,使得以BOD,,为顶点的三角形与BAC△相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由;(10)(30),(03)ABC,,,,(3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO与ACO的大小(不必证明),并写出此时点P的横坐标px的取值范围.Oxy练习2图CBEDAOyClxBA1x练习3图oCBAx练习4图Py4练习4、如图所示,已知抛物线21yx与x轴交于A、B两点,与y轴交于点C.(1)求A、B、C三点的坐标.(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.(3)在x轴上方的抛物线上是否存在一点M,过M作MGx轴于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,请求出M点的坐标;否则,请说明理由.练习5、已知:如图,在平面直角坐标系中,ABC△是直角三角形,90ACB,点AC,的坐标分别为(30)A,,(10)C,,3tan4BAC.(1)求过点AB,的直线的函数表达式;点(30)A,,(10)C,,B(13),,3944yx(2)在x轴上找一点D,连接DB,使得ADB△与ABC△相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如PQ,分别是AB和AD上的动点,连接PQ,设APDQm,问是否存在这样的m使得APQ△与ADB△相似,如存在,请求出m的值;如不存在,请说明理由.ACOBxy5练习6、如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。练习7、如图,已知抛物线y=34x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=34tx-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.(1)填空:点C的坐标是__,b=__,c=__;(2)求线段QH的长(用含t的式子表示);(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.ABxyOQHPC6练习8、如图,抛物线经过(40)(10)(02)ABC,,,,,三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PMx轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与OAC△相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得DCA△的面积最大,求出点D的坐标.练习9、已知,如图1,过点01E,作平行于x轴的直线l,抛物线214yx上的两点AB、的横坐标分别为1和4,直线AB交y轴于点F,过点AB、分别作直线l的垂线,垂足分别为点C、D,连接CFDF、.(1)求点ABF、、的坐标;(2)求证:CFDF;(3)点P是抛物线214yx对称轴右侧图象上的一动点,过点P作PQPO⊥交x轴于点Q,是否存在点P使得OPQ△与CDF△相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.7练习10、当x=2时,抛物线y=ax2+bx+c取得最小值-1,并且抛物线与y轴交于点C(0,3),与x轴交于点A、B.(1)求该抛物线的关系式;(2)若点M(x,y1),N(x+1,y2)都在该抛物线上,试比较y1与y2的大小;(3)D是线段AC的中点,E为线段AC上一动点(A、C两端点除外),过点E作y轴的平行线EF与抛物线交于点F.问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,则说明理由.练习11、如图,一次函数y=-2x的图象与二次函数y=-x2+3x图象的对称轴交于点B.(1)写出点B的坐标;(2)已知点P是二次函数y=-x2+3x图象在y轴右侧..部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于C、D两点.若以CD为直角边的△PCD与△OCD相似,则点P的坐标为.OBCDABCDOxyEF3(第26题图)8练习12、如图,抛物线21yaxbx与x轴交于两点A(-1,0),B(1,0),与y轴交于点C.(1)求抛物线的解析式;(2)过点B作BD∥CA与抛物线交于点D,求四边形ACBD的面积;(3)在x轴下方的抛物线上是否存在一点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.练习13、已知:函数y=ax2+x+1的图象与x轴只有一个公共点.(1)求这个函数关系式;(2)如图所示,设二次..函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;(3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上,若在抛物线上,求出M点的坐标;若不在,请说明理由.AxyOB9练习14、如图,设抛物线C1:512xay,C2:512xay,C1与C2的交点为A,B,点A的坐标是)4,2(,点B的横坐标是-2.(1)求a的值及点B的坐标;(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N.①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标;②若l与△DHG的边DG相交,求点N的横坐标的取值范围.练习15、如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原。(1)当x=0时,折痕EF的长为;当点E与点A重合时,折痕EF的长为;(2)请写出使四边形EPFD为菱形的x的取值范围,并求出当x=2时菱形的边长;(3)令2yEF,当点E在AD、点F在BC上时,写出y与x的函数关系式。当y取最大值时,判断EAP与PBF是否相似?若相似,求出x的值;若不相似,请说明理由。10练习16、如图,已知(4,0)A,(0,4)B,现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.(1)求C点坐标及直线BC的解析式;(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;(3)现将直线BC绕B点旋转与抛物线相交与另一点P,请找出抛物线上所有满足到直线AB距离为32的点P.11参考答案例题、解:⑴由题意可设抛物线的解析式为1)2x(ay2∵抛物线过原点,∴1)20(a02∴41a.抛物线的解析式为1)2x(41y2,即xx41y2⑵如图1,当OB为边即四边形OCDB是平行四边形时,CD∥=OB,由1)2x(4102得4x,0x21,∴B(4,0),OB=4.∴D点的横坐标为6将x=6代入1)2x(41y2,得y=-3,∴D(6,-3);根据抛物线的对称性可知,在对称轴的左侧抛物线上存在点D,使得四边形ODCB是平行四边形,此时D点的坐标为(-2,-3),当OB为对角线即四边形OCBD是平行四边形时,D点即为A点,此时D点的坐标为(2,1)⑶如图2,由抛物线的对称性可知:AO=AB,∠AOB=∠ABO.若△BOP与△AOB相似,必须有∠POB=∠BOA=∠BPO设OP交抛物线的对称轴于A′点,显然A′(2,-1)∴直线OP的解析式为x21y由xx41x212,得6x,0x21.∴P(6,-3)过P作PE⊥x轴,在Rt△BEP中,BE=2,PE=3,∴PB=13≠4.∴PB≠OB,∴∠BOP≠∠BPO,∴△PBO与△BAO不相似,同理可说明在对称轴左边的抛物线上也不存在符合条件的P点.所以在该抛物线上不存在点P,使得△BOP与△AOB相似.EA'OABPyx图2COABDyx图112练习1、解:(1)由已知可得:33375530420ababc解之得,253033abc,,.因而得,抛物线的解析式为:225333yxx.(2)存在.设Q点的坐标为()mn,,则225333nmm,要使,BQPBOCPPBQCPOC△∽△,则有3333nm,即22533
本文标题:二次函数与相似三角形问题(含答案)
链接地址:https://www.777doc.com/doc-4793858 .html