您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 26.3.3实际问题与二次函数(面积型)
问题5:如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。ABCD解:(1)∵AB为x米、篱笆长为24米∴花圃宽为(24-4x)米(3)∵墙的可用长度为8米(2)当x=时,S最大值==36(平方米)32ababac442∴S=x(24-4x)=-4x2+24x(0x6)∴024-4x≤84≤x6∴当x=4m时,S最大值=32平方米小试牛刀如图,在ΔABC中,AB=8cm,BC=6cm,∠B=90°,点P从点A开始沿AB边向点B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P,Q分别从A,B同时出发,几秒后ΔPBQ的面积最大?最大面积是多少?ABCPQ解:根据题意,设经过x秒后ΔPBQ的面积y最大AP=2xcmPB=(8-2x)cmQB=xcm则y=1/2x(8-2x)=-x2+4x=-(x2-4x+4-4)=-(x-2)2+4所以,当P、Q同时运动2秒后ΔPBQ的面积y最大最大面积是4cm2(0x4)ABCPQ在矩形荒地ABCD中,AB=10,BC=6,今在四边上分别选取E、F、G、H四点,且AE=AH=CF=CG=x,建一个花园,如何设计,可使花园面积最大?DCABGHFE106解:设花园的面积为y则y=60-x2-(10-x)(6-x)=-2x2+16x(0x6)=-2(x-4)2+32所以当x=4时花园的最大面积为32实际问题抽象转化数学问题运用数学知识问题的解返回解释检验谈谈你的学习体会问题5:如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线相交于点D。(1)设AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式;(2)当AP的长为何值时,S△PCQ=S△ABC问题5:如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线相交于点D。(1)设AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式;(2)当AP的长为何值时,S△PCQ=S△ABC解:(1)∵P、Q分别从A、C两点同时出发,速度相等∴AP=CQ=x当P在线段AB上时21S△PCQ=CQ•PB21=AP•PB即S=(0x2)xx221DACBPQ当P在线段AB的延长线上时S△PCQ=21)2(21xxPBCQxx221即S=(x2)DACBPQ(2)当S△PCQ=S△ABC时,有①=2xx221此方程无解②=2xx2210422xx∴x1=1+,x2=1-(舍去)55∴当AP长为1+时,S△PCQ=S△ABC5
本文标题:26.3.3实际问题与二次函数(面积型)
链接地址:https://www.777doc.com/doc-4803435 .html