您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 初三数学二次函数较难题型
1一、二次函数解析式及定义型问题(顶点式中考要点)1.把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是2)1(2xy则原二次函数的解析式为2.二次函数的图象顶点坐标为(2,1),形状开品与抛物线y=-2x2相同,这个函数解析式为________。3.如果函数1)3(232kxxkykk是二次函数,则k的值是______4.(08绍兴)已知点11()xy,,22()xy,均在抛物线21yx上,下列说法中正确的是()A.若12yy,则12xxB.若12xx,则12yyC.若120xx,则12yyD.若120xx,则12yy5.(兰州10)抛物线cbxxy2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322xxy,则b、c的值为A.b=2,c=2B.b=2,c=0C.b=-2,c=-1D.b=-3,c=26.抛物线5)43()1(22xmmxmy以Y轴为对称轴则。M=7.二次函数52aaxy的图象顶点在Y轴负半轴上。且函数值有最小值,则m的取值范围是8.函数245(5)21aayaxx,当a_______时,它是一次函数;当a_______时,它是二次函数.9.抛物线2)13(xy当x时,Y随X的增大而增大10.抛物线42axxy的顶点在X轴上,则a值为11.已知二次函数2)3(2xy,当X取1x和2x时函数值相等,当X取1x+2x时函数值为12.若二次函数kaxy2,当X取X1和X2(21xx)时函数值相等,则当X取X1+X2时,函数值为13.若函数2)3(xay过(2.9)点,则当X=4时函数值Y=14.若函数khxy2)(的顶点在第二象限则,h0,k015.已知二次函数当x=2时Y有最大值是1.且过(3.0)点求解析式?16.将121222xxy变为nmxay2)(的形式,则nm=_____。17.已知抛物线在X轴上截得的线段长为6.且顶点坐标为(2,3)求解析式?(讲解对称性书写)二、一般式交点式中考要点18.如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于()(A)8(B)14(C)8或14(D)-8或-1419.二次函数y=x2-(12-k)x+12,当x1时,y随着x的增大而增大,当x1时,y随着x的增大而减小,则k的值应取()(A)12(B)11(C)10(D)920.若0b,则二次函数12bxxy的图象的顶点在(A)(A)第一象限(B)第二象限(C)第三象限(D)第四象限21.不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0的条件是()A.a0,△0B.a0,△0C.a0,△0D.a0,△022.已知二次函数)1(3)1(2aaxxay的图象过原点则a的值为23.二次函数432xxy关于Y轴的对称图象的解析式为关于X轴的对称图象的解析式为关于顶点旋转180度的图象的解析式为24.二次函数y=2(x+3)(x-1)的x轴的交点的个数有__个,交点坐标为_______。25.已知二次函数222xaxy的图象与X轴有两个交点,则K的取值范围是26.二次函数y=(x-1)(x+2)的顶点为___,对称轴为_。27.抛物线y=(k-1)x2+(2-2k)x+1,那么此抛物线的对称轴是直线_________,它必定经过________和____228.若抛物线22yxxa的顶点在x轴的下方,则a的取值范围是()A.1aB.1aC.1a≥D.1a≤29.抛物线y=3x-x2+4与x轴交点为A,B,顶点为C,(1)求△ABC的面积。(2)若在抛物线上有一点D,使△ABD的面积是△ABC的面积的一半。求D点坐标(得分点的把握)30.已知二次函数图象与x轴交点(2,0)(-1,0)与y轴交点是(0,-1)求解析式及顶点坐标。31.y=ax2+bx+c图象与x轴交于A、B与y轴交于C,OA=2,OB=1,OC=1,求函数解析式三、二次函数极值问题58.二次函数2yaxbxc中,2bac,且0x时4y,则()A.4y最大B.4y最小C.3y最大D.3y最小59.已知二次函数22)3()1(xxy,当x=_________时,函数达到最小值。60.二次函数y=x2-(12-k)x+12,当x1时,y随着x的增大而增大,当x1时,y随着x的增大而减小,则k的值应取()(A)12(B)11(C)10(D)961.(2008年潍坊市)若一次函数的图像过第一、三、四象限,则函数()A.有最大值B..有最大值C.有最小值D.有最小值62.若二次函数2()yaxhk的值恒为正值,则_____.A.0,0akB.0,0ahC.0,0akD.0,0ak四、形积专题.63.(09年陕西省)如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2).(1)求点B的坐标;(相似)(2)求过点A、O、B的抛物线的表达式;(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO.34.(09武汉)如图,抛物线24yaxbxa经过(10)A,、(04)C,两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点(1)Dmm,在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且45DBP°,求点P的坐标.65.(09烟台市中考变式)如图,抛物线23yaxbx与x轴交于AB,两点,与y轴交于C点,且经过点(23)a,,对称轴是直线1x,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点PACN,,,为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;五、二次函数应用利润问题67.(贵阳市)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(3分)(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3分)(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?(4分)68.(2009·洛江)我区某工艺厂为迎接建国60周年,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,其中工艺品的销售单价x(元∕件)与每天销售量y(件)之间满足如图3-4-14所示关系.(1)请根据图象直接写出当销售单价定为30元和40元时相应的日销售量;(2)①试求出y与x之间的函数关系式;②若物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)。4图4DCBA25m六、二次函数应用几何面积问题+存在性问题69.(2007年韶关市)为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图4).若设绿化带的BC边长为xm,绿化带的面积为ym².(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,满足条件的绿化带的面积最大?70.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式;(2)如果要围成面积为45m2的花圃,AB的长是多少米?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.71.(08重庆)已知:,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0)。(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ。当△CQE的面积最大时,求点Q的坐标;72.(3)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)。问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。5部分答案49.450.B56.457.-1<x<364665.6668.解析:(1)观察图象可直接得出销售单价定为30元和40元时相应的日销售量分别为400件和500件.(2)①因为图象过(30,500)、(40,400)两点,所以利用待定系数法可求出y与x之间的函数关系式;②表示出利润与销售单价之间的函数关系式,利用函数的增减性分析求解.图3-4-14解:(1)500件和400件;7(2)①设这个函数关系为y=kx+b∵这个一次函数的图象经过(30,500)、(40,400)这两点,∴5003040040kbkb解得10800kb∴函数关系式是:y=-10x+800②设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x-20)(-10x+800)=-10(x-50)2+9000∵-10<0,∴函数图象为开口向下的抛物线.其对称轴为x=50,又20x≤45在对称轴的左侧,W的值随着x值的增大而增大∴当x=45时,W取得最大值,W最大=-10(45-50)2+9000=8750答:销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润为8750元。规律小结:利用二次函数解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量,用函数表达式表示出它们之间的关系;(3)利用二次函数的有关性质求解;(4)检验结果的合理性,写出问题的答案.71.72.解:(1)由题意,得)解得所求抛物线的解析式为:.(2)设点的坐标为,过点作轴于点.由,得,.点的坐标为.,.,.,即..8.又,当时,有最大值3,此时.(3)存在.在中.(ⅰ)若,,.又在中,,...此时,点的坐标为.由,得,.此时,点的坐标为:或.(ⅱ)若,过点作轴于点,由等腰三角形的性质得:,,在等腰直角中,..由,得,.此时,点的坐标为:或.(ⅲ)若,,且,点到的距离为,而,此时,不存在这样的直线,使得是等腰三角形.综上所述,存在这样的直线,使得是等腰三角形.所求点的坐标为:或或或
本文标题:初三数学二次函数较难题型
链接地址:https://www.777doc.com/doc-4812452 .html